Vertebrate food products as a potential source of prion-like α-synuclein

contente
  1. Vidailhet, M. Movement disorders in 2010: Parkinson disease-symptoms and treatments. Nat. Rev. Neurol. 7, 70–72 (2011).
[Article](https://doi.org/10.1038%2Fnrneurol.2010.216)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhsFOrsbg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21297648)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Movement%20disorders%20in%202010%3A%20Parkinson%20disease-symptoms%20and%20treatments&journal=Nat.%20Rev.%20Neurol.&doi=10.1038%2Fnrneurol.2010.216&volume=7&pages=70-72&publication_year=2011&author=Vidailhet%2CM) 
  1. Goldman, J. G. & Postuma, R. Premotor and nonmotor features of Parkinson’s disease. Curr. Opin. Neurol. 27, 434–441 (2014).
[Article](https://doi.org/10.1097%2FWCO.0000000000000112)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24978368)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4181670)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Premotor%20and%20nonmotor%20features%20of%20Parkinson%E2%80%99s%20disease&journal=Curr.%20Opin.%20Neurol.&doi=10.1097%2FWCO.0000000000000112&volume=27&pages=434-441&publication_year=2014&author=Goldman%2CJG&author=Postuma%2CR) 
  1. Paulus, W. & Jellinger, K. The neuropathologic basis of different clinical subgroups of Parkinson’s disease. J. Neuropathol. Exp. Neurol. 50, 743–755 (1991).
[Article](https://doi.org/10.1097%2F00005072-199111000-00006)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK38%2FosFWjsQ%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1748881)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20neuropathologic%20basis%20of%20different%20clinical%20subgroups%20of%20Parkinson%E2%80%99s%20disease&journal=J.%20Neuropathol.%20Exp.%20Neurol.&doi=10.1097%2F00005072-199111000-00006&volume=50&pages=743-755&publication_year=1991&author=Paulus%2CW&author=Jellinger%2CK) 
  1. Gibb, W. R. & Lees, A. J. Anatomy, pigmentation, ventral and dorsal subpopulations of the substantia nigra, and differential cell death in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 54, 388–396 (1991).
[Article](https://doi.org/10.1136%2Fjnnp.54.5.388)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK3MzisVyktA%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1865199)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC488535)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Anatomy%2C%20pigmentation%2C%20ventral%20and%20dorsal%20subpopulations%20of%20the%20substantia%20nigra%2C%20and%20differential%20cell%20death%20in%20Parkinson%E2%80%99s%20disease&journal=J.%20Neurol.%20Neurosurg.%20Psychiatry&doi=10.1136%2Fjnnp.54.5.388&volume=54&pages=388-396&publication_year=1991&author=Gibb%2CWR&author=Lees%2CAJ) 
  1. Pankratz, N. et al. Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum. Genet. 124, 593–605 (2009).
[Article](https://link.springer.com/doi/10.1007/s00439-008-0582-9)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXhsFWrsr%2FI)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18985386)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Genomewide%20association%20study%20for%20susceptibility%20genes%20contributing%20to%20familial%20Parkinson%20disease&journal=Hum.%20Genet.&doi=10.1007%2Fs00439-008-0582-9&volume=124&pages=593-605&publication_year=2009&author=Pankratz%2CN) 
  1. Stefanis, L. Alpha-synuclein in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009399 (2012).
[Article](https://doi.org/10.1101%2Fcshperspect.a009399)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22355802)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3281589)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXntlenu7s%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alpha-synuclein%20in%20Parkinson%E2%80%99s%20disease&journal=Cold%20Spring%20Harb.%20Perspect.%20Med.&doi=10.1101%2Fcshperspect.a009399&volume=2&publication_year=2012&author=Stefanis%2CL) 
  1. Lavedan, C. The synuclein family. Genome Res. 8, 871–880 (1998).
[Article](https://doi.org/10.1101%2Fgr.8.9.871)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1cXmsVWgsro%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9750188)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20synuclein%20family&journal=Genome%20Res.&doi=10.1101%2Fgr.8.9.871&volume=8&pages=871-880&publication_year=1998&author=Lavedan%2CC) 
  1. Uversky, V. N. & Eliezer, D. Biophysics of Parkinson’s disease: structure and aggregation of alpha-synuclein. Curr. Protein Pept. Sci. 10, 483–499 (2009).
[Article](https://doi.org/10.2174%2F138920309789351921)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhtlSit7jE)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19538146)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3786709)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Biophysics%20of%20Parkinson%E2%80%99s%20disease%3A%20structure%20and%20aggregation%20of%20alpha-synuclein&journal=Curr.%20Protein%20Pept.%20Sci.&doi=10.2174%2F138920309789351921&volume=10&pages=483-499&publication_year=2009&author=Uversky%2CVN&author=Eliezer%2CD) 
  1. Bendor, J. T., Logan, T. P. & Edwards, R. H. The function of alpha-synuclein. Neuron 79, 1044–1066 (2013).
[Article](https://doi.org/10.1016%2Fj.neuron.2013.09.004)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhsVOkt7fK)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24050397)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20function%20of%20alpha-synuclein&journal=Neuron&doi=10.1016%2Fj.neuron.2013.09.004&volume=79&pages=1044-1066&publication_year=2013&author=Bendor%2CJT&author=Logan%2CTP&author=Edwards%2CRH) 
  1. Bartels, T., Choi, J. G. & Selkoe, D. J. Alpha-synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477, 107–110 (2011).
[Article](https://doi.org/10.1038%2Fnature10324)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhtFWku7nM)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21841800)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3166366)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alpha-synuclein%20occurs%20physiologically%20as%20a%20helically%20folded%20tetramer%20that%20resists%20aggregation&journal=Nature&doi=10.1038%2Fnature10324&volume=477&pages=107-110&publication_year=2011&author=Bartels%2CT&author=Choi%2CJG&author=Selkoe%2CDJ) 
  1. Dettmer, U., Newman, A. J., Luth, E. S., Bartels, T. & Selkoe, D. In vivo cross-linking reveals principally oligomeric forms of alpha-synuclein and beta-synuclein in neurons and non-neural cells. J. Biol. Chem. 288, 6371–6385 (2013).
[Article](https://doi.org/10.1074%2Fjbc.M112.403311)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXjtlOjsb4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23319586)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3585072)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=In%20vivo%20cross-linking%20reveals%20principally%20oligomeric%20forms%20of%20alpha-synuclein%20and%20beta-synuclein%20in%20neurons%20and%20non-neural%20cells&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M112.403311&volume=288&pages=6371-6385&publication_year=2013&author=Dettmer%2CU&author=Newman%2CAJ&author=Luth%2CES&author=Bartels%2CT&author=Selkoe%2CD) 
  1. Tuttle, M. D. et al. Solid-state NMR structure of a pathogenic fibril of full-length human alpha-synuclein. Nat. Struct. Mol. Biol. 23, 409–415 (2016).
[Article](https://doi.org/10.1038%2Fnsmb.3194)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XksFCrtb8%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27018801)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5034296)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Solid-state%20NMR%20structure%20of%20a%20pathogenic%20fibril%20of%20full-length%20human%20alpha-synuclein&journal=Nat.%20Struct.%20Mol.%20Biol.&doi=10.1038%2Fnsmb.3194&volume=23&pages=409-415&publication_year=2016&author=Tuttle%2CMD) 
  1. Li, J., Uversky, V. N. & Fink, A. L. Effect of familial Parkinson’s disease point mutations A30P and A53T on the structural properties, aggregation, and fibrillation of human alpha-synuclein. Biochemistry 40, 11604–11613 (2001).
[Article](https://doi.org/10.1021%2Fbi010616g)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXmtF2lsbo%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11560511)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effect%20of%20familial%20Parkinson%E2%80%99s%20disease%20point%20mutations%20A30P%20and%20A53T%20on%20the%20structural%20properties%2C%20aggregation%2C%20and%20fibrillation%20of%20human%20alpha-synuclein&journal=Biochemistry&doi=10.1021%2Fbi010616g&volume=40&pages=11604-11613&publication_year=2001&author=Li%2CJ&author=Uversky%2CVN&author=Fink%2CAL) 
  1. Dettmer, U. et al. Parkinson-causing alpha-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation. Nat. Commun. 6, 7314 (2015).
[Article](https://doi.org/10.1038%2Fncomms8314)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26076669)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490410)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Parkinson-causing%20alpha-synuclein%20missense%20mutations%20shift%20native%20tetramers%20to%20monomers%20as%20a%20mechanism%20for%20disease%20initiation&journal=Nat.%20Commun.&doi=10.1038%2Fncomms8314&volume=6&publication_year=2015&author=Dettmer%2CU) 
  1. Lv, Z. et al. Direct detection of alpha-synuclein dimerization dynamics: single-molecule fluorescence analysis. Biophys. J. 108, 2038–2047 (2015).
[Article](https://doi.org/10.1016%2Fj.bpj.2015.03.010)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXlsVSks7w%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25902443)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4407253)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Direct%20detection%20of%20alpha-synuclein%20dimerization%20dynamics%3A%20single-molecule%20fluorescence%20analysis&journal=Biophys.%20J.&doi=10.1016%2Fj.bpj.2015.03.010&volume=108&pages=2038-2047&publication_year=2015&author=Lv%2CZ) 
  1. Roberts, H. L. & Brown, D. R. Seeking a mechanism for the toxicity of oligomeric alpha-synuclein. Biomolecules 5, 282–305 (2015).
[Article](https://doi.org/10.3390%2Fbiom5020282)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFyhurvP)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25816357)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4496673)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Seeking%20a%20mechanism%20for%20the%20toxicity%20of%20oligomeric%20alpha-synuclein&journal=Biomolecules&doi=10.3390%2Fbiom5020282&volume=5&pages=282-305&publication_year=2015&author=Roberts%2CHL&author=Brown%2CDR) 
  1. Lashuel, H. A., Overk, C. R., Oueslati, A. & Masliah, E. The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat. Rev. Neurosci. 14, 38–48 (2013).
[Article](https://doi.org/10.1038%2Fnrn3406)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhvVGls7jN)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23254192)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4295774)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20many%20faces%20of%20alpha-synuclein%3A%20from%20structure%20and%20toxicity%20to%20therapeutic%20target&journal=Nat.%20Rev.%20Neurosci.&doi=10.1038%2Fnrn3406&volume=14&pages=38-48&publication_year=2013&author=Lashuel%2CHA&author=Overk%2CCR&author=Oueslati%2CA&author=Masliah%2CE) 
  1. Luk, K. C. et al. Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338, 949–953 (2012).
[Article](https://doi.org/10.1126%2Fscience.1227157)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xhs1GntL7L)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23161999)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552321)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pathological%20alpha-synuclein%20transmission%20initiates%20Parkinson-like%20neurodegeneration%20in%20nontransgenic%20mice&journal=Science&doi=10.1126%2Fscience.1227157&volume=338&pages=949-953&publication_year=2012&author=Luk%2CKC) 
  1. Abounit, S. et al. Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular trafficking of lysosomes. EMBO J. 35, 2120–2138 (2016).
[Article](https://doi.org/10.15252%2Fembj.201593411)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhtlOmurnF)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27550960)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5048354)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Tunneling%20nanotubes%20spread%20fibrillar%20alpha-synuclein%20by%20intercellular%20trafficking%20of%20lysosomes&journal=EMBO%20J.&doi=10.15252%2Fembj.201593411&volume=35&pages=2120-2138&publication_year=2016&author=Abounit%2CS) 
  1. Luk, K. C. et al. Exogenous alpha-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl. Acad. Sci. USA 106, 20051–20056 (2009).
[Article](https://doi.org/10.1073%2Fpnas.0908005106)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhsFGjtLvL)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19892735)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785290)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Exogenous%20alpha-synuclein%20fibrils%20seed%20the%20formation%20of%20Lewy%20body-like%20intracellular%20inclusions%20in%20cultured%20cells&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.0908005106&volume=106&pages=20051-20056&publication_year=2009&author=Luk%2CKC) 
  1. Apetri, M. M. et al. Direct observation of alpha-synuclein amyloid aggregates in endocytic vesicles of neuroblastoma cells. PLoS One 11, e0153020 (2016).
[Article](https://doi.org/10.1371%2Fjournal.pone.0153020)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27105068)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841506)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xhs12qtL7M)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Direct%20observation%20of%20alpha-synuclein%20amyloid%20aggregates%20in%20endocytic%20vesicles%20of%20neuroblastoma%20cells&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0153020&volume=11&publication_year=2016&author=Apetri%2CMM) 
  1. Roberti, M. J. et al. Imaging nanometer-sized alpha-synuclein aggregates by superresolution fluorescence localization microscopy. Biophys. J. 102, 1598–1607 (2012).
[Article](https://doi.org/10.1016%2Fj.bpj.2012.03.010)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XlsVWqsLo%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22500760)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3318128)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Imaging%20nanometer-sized%20alpha-synuclein%20aggregates%20by%20superresolution%20fluorescence%20localization%20microscopy&journal=Biophys.%20J.&doi=10.1016%2Fj.bpj.2012.03.010&volume=102&pages=1598-1607&publication_year=2012&author=Roberti%2CMJ) 
  1. Mahul-Mellier, A. L. et al. Fibril growth and seeding capacity play key roles in alpha-synuclein-mediated apoptotic cell death. Cell Death Differ. 22, 2107–2122 (2015).
[Article](https://doi.org/10.1038%2Fcdd.2015.79)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvVCru7rF)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26138444)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4816119)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Fibril%20growth%20and%20seeding%20capacity%20play%20key%20roles%20in%20alpha-synuclein-mediated%20apoptotic%20cell%20death&journal=Cell%20Death%20Differ.&doi=10.1038%2Fcdd.2015.79&volume=22&pages=2107-2122&publication_year=2015&author=Mahul-Mellier%2CAL) 
  1. Volpicelli-Daley, L. A. et al. Exogenous alpha-synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).
[Article](https://doi.org/10.1016%2Fj.neuron.2011.08.033)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXht12kt7bP)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21982369)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3204802)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Exogenous%20alpha-synuclein%20fibrils%20induce%20Lewy%20body%20pathology%20leading%20to%20synaptic%20dysfunction%20and%20neuron%20death&journal=Neuron&doi=10.1016%2Fj.neuron.2011.08.033&volume=72&pages=57-71&publication_year=2011&author=Volpicelli-Daley%2CLA) 
  1. Pinotsi, D. et al. Direct observation of heterogeneous amyloid fibril growth kinetics via two-color super-resolution microscopy. Nano Lett. 14, 339–345 (2014).
[Article](https://doi.org/10.1021%2Fnl4041093)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhvFSqurjO)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24303845)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Direct%20observation%20of%20heterogeneous%20amyloid%20fibril%20growth%20kinetics%20via%20two-color%20super-resolution%20microscopy&journal=Nano%20Lett.&doi=10.1021%2Fnl4041093&volume=14&pages=339-345&publication_year=2014&author=Pinotsi%2CD) 
  1. Pinotsi, D. et al. Nanoscopic insights into seeding mechanisms and toxicity of alpha-synuclein species in neurons. Proc. Natl. Acad. Sci. USA 113, 3815–3819 (2016).
[Article](https://doi.org/10.1073%2Fpnas.1516546113)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XksVKkt7s%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26993805)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833232)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nanoscopic%20insights%20into%20seeding%20mechanisms%20and%20toxicity%20of%20alpha-synuclein%20species%20in%20neurons&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1516546113&volume=113&pages=3815-3819&publication_year=2016&author=Pinotsi%2CD) 
  1. Peelaerts, W. et al. Alpha-synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature. 522, 340–344 (2015).
[Article](https://doi.org/10.1038%2Fnature14547)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFeiur3M)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26061766)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alpha-synuclein%20strains%20cause%20distinct%20synucleinopathies%20after%20local%20and%20systemic%20administration&journal=Nature.&doi=10.1038%2Fnature14547&volume=522&pages=340-344&publication_year=2015&author=Peelaerts%2CW) 
  1. Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med. 14, 504–506 (2008).
[Article](https://doi.org/10.1038%2Fnm1747)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXlsFCmsrg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18391962)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lewy%20body-like%20pathology%20in%20long-term%20embryonic%20nigral%20transplants%20in%20Parkinson%E2%80%99s%20disease&journal=Nat.%20Med.&doi=10.1038%2Fnm1747&volume=14&pages=504-506&publication_year=2008&author=Kordower%2CJH&author=Chu%2CY&author=Hauser%2CRA&author=Freeman%2CTB&author=Olanow%2CCW) 
  1. Li, J. Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med. 14, 501–503 (2008).
[Article](https://doi.org/10.1038%2Fnm1746)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXlsFCmsrs%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18391963)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lewy%20bodies%20in%20grafted%20neurons%20in%20subjects%20with%20Parkinson%E2%80%99s%20disease%20suggest%20host-to-graft%20disease%20propagation&journal=Nat.%20Med.&doi=10.1038%2Fnm1746&volume=14&pages=501-503&publication_year=2008&author=Li%2CJY) 
  1. Li, J. Y. et al. Characterization of Lewy body pathology in 12- and 16-year-old intrastriatal mesencephalic grafts surviving in a patient with Parkinson’s disease. Mov. Disord. 25, 1091–1096 (2010).
[Article](https://doi.org/10.1002%2Fmds.23012)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20198645)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Characterization%20of%20Lewy%20body%20pathology%20in%2012-%20and%2016-year-old%20intrastriatal%20mesencephalic%20grafts%20surviving%20in%20a%20patient%20with%20Parkinson%E2%80%99s%20disease&journal=Mov.%20Disord.&doi=10.1002%2Fmds.23012&volume=25&pages=1091-1096&publication_year=2010&author=Li%2CJY) 
  1. Brahic, M., Bousset, L., Bieri, G., Melki, R. & Gitler, A. D. Axonal transport and secretion of fibrillar forms of alpha-synuclein, Abeta42 peptide and HTTExon 1. Acta Neuropathol. 131, 539–548 (2016).
[Article](https://link.springer.com/doi/10.1007/s00401-016-1538-0)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XitFCjsL0%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26820848)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4789229)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Axonal%20transport%20and%20secretion%20of%20fibrillar%20forms%20of%20alpha-synuclein%2C%20Abeta42%20peptide%20and%20HTTExon%201&journal=Acta%20Neuropathol.&doi=10.1007%2Fs00401-016-1538-0&volume=131&pages=539-548&publication_year=2016&author=Brahic%2CM&author=Bousset%2CL&author=Bieri%2CG&author=Melki%2CR&author=Gitler%2CAD) 
  1. Mao, X. et al. Pathological alpha-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 353, 1513–1524 (2016).
  1. Alvarez-Erviti, L. et al. Lysosomal dysfunction increases exosome-mediated alpha-synuclein release and transmission. Neurobiol. Dis. 42, 360–367 (2011).
[Article](https://doi.org/10.1016%2Fj.nbd.2011.01.029)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXkvVGlur0%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21303699)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3107939)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lysosomal%20dysfunction%20increases%20exosome-mediated%20alpha-synuclein%20release%20and%20transmission&journal=Neurobiol.%20Dis.&doi=10.1016%2Fj.nbd.2011.01.029&volume=42&pages=360-367&publication_year=2011&author=Alvarez-Erviti%2CL) 
  1. Emmanouilidou, E. et al. Cell-produced alpha-synuclein is secreted in a calcium-dependent manner by exosomes and impacts neuronal survival. J. Neurosci. 30, 6838–6851 (2010).
[Article](https://doi.org/10.1523%2FJNEUROSCI.5699-09.2010)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXovVWnurk%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20484626)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3842464)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cell-produced%20alpha-synuclein%20is%20secreted%20in%20a%20calcium-dependent%20manner%20by%20exosomes%20and%20impacts%20neuronal%20survival&journal=J.%20Neurosci.&doi=10.1523%2FJNEUROSCI.5699-09.2010&volume=30&pages=6838-6851&publication_year=2010&author=Emmanouilidou%2CE) 
  1. Bernis, M. E. et al. Prion-like propagation of human brain-derived alpha-synuclein in transgenic mice expressing human wild-type alpha-synuclein. Acta Neuropathol. Commun. 3, 75 (2015).
[Article](https://link.springer.com/doi/10.1186/s40478-015-0254-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26612754)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660655)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhsFSqtLrP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Prion-like%20propagation%20of%20human%20brain-derived%20alpha-synuclein%20in%20transgenic%20mice%20expressing%20human%20wild-type%20alpha-synuclein&journal=Acta%20Neuropathol.%20Commun.&doi=10.1186%2Fs40478-015-0254-7&volume=3&publication_year=2015&author=Bernis%2CME) 
  1. Rey, N. L. et al. Widespread transneuronal propagation of alpha-synucleinopathy triggered in olfactory bulb mimics prodromal Parkinson’s disease. J. Exp. Med. 213, 1759–1778 (2016).
[Article](https://doi.org/10.1084%2Fjem.20160368)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XitVWju7vJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27503075)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4995088)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Widespread%20transneuronal%20propagation%20of%20alpha-synucleinopathy%20triggered%20in%20olfactory%20bulb%20mimics%20prodromal%20Parkinson%E2%80%99s%20disease&journal=J.%20Exp.%20Med.&doi=10.1084%2Fjem.20160368&volume=213&pages=1759-1778&publication_year=2016&author=Rey%2CNL) 
  1. Woerman, A. L. et al. Propagation of prions causing synucleinopathies in cultured cells. Proc. Natl. Acad. Sci. USA 112, E4949–E4958 (2015).
[Article](https://doi.org/10.1073%2Fpnas.1513426112)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtlCqtr7L)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26286986)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4568231)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Propagation%20of%20prions%20causing%20synucleinopathies%20in%20cultured%20cells&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1513426112&volume=112&pages=E4949-E4958&publication_year=2015&author=Woerman%2CAL) 
  1. Goedert, M., Masuda-Suzukake, M. & Falcon, B. Like prions: the propagation of aggregated tau and alpha-synuclein in neurodegeneration. Brain 140, 266–278 (2017).
[Article](https://doi.org/10.1093%2Fbrain%2Faww230)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27658420)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Like%20prions%3A%20the%20propagation%20of%20aggregated%20tau%20and%20alpha-synuclein%20in%20neurodegeneration&journal=Brain&doi=10.1093%2Fbrain%2Faww230&volume=140&pages=266-278&publication_year=2017&author=Goedert%2CM&author=Masuda-Suzukake%2CM&author=Falcon%2CB) 
  1. George, S., Rey, N. L., Reichenbach, N., Steiner, J. A. & Brundin, P. Alpha-synuclein: the long distance runner. Brain Pathol. 23, 350–357 (2013).
[Article](https://doi.org/10.1111%2Fbpa.12046)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXptVajurY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23587141)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3674536)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alpha-synuclein%3A%20the%20long%20distance%20runner&journal=Brain%20Pathol.&doi=10.1111%2Fbpa.12046&volume=23&pages=350-357&publication_year=2013&author=George%2CS&author=Rey%2CNL&author=Reichenbach%2CN&author=Steiner%2CJA&author=Brundin%2CP) 
  1. Chu, Y. & Kordower, J. H. The prion hypothesis of Parkinson’s disease. Curr. Neurol. Neurosci. Rep. 15, 28 (2015).
[Article](https://link.springer.com/doi/10.1007/s11910-015-0549-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25868519)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXmsl2mtLo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20prion%20hypothesis%20of%20Parkinson%E2%80%99s%20disease&journal=Curr.%20Neurol.%20Neurosci.%20Rep.&doi=10.1007%2Fs11910-015-0549-x&volume=15&publication_year=2015&author=Chu%2CY&author=Kordower%2CJH) 
  1. Jucker, M. & Walker, L. C. Self-propagation of pathogenic protein aggregates in neurodegenerative diseases. Nature 501, 45–51 (2013).
[Article](https://doi.org/10.1038%2Fnature12481)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtlyrtLzP)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24005412)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963807)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Self-propagation%20of%20pathogenic%20protein%20aggregates%20in%20neurodegenerative%20diseases&journal=Nature&doi=10.1038%2Fnature12481&volume=501&pages=45-51&publication_year=2013&author=Jucker%2CM&author=Walker%2CLC) 
  1. Burke, R. E., Dauer, W. T. & Vonsattel, J. P. A critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann. Neurol. 64, 485–491 (2008).
[Article](https://doi.org/10.1002%2Fana.21541)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19067353)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2605160)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20critical%20evaluation%20of%20the%20Braak%20staging%20scheme%20for%20Parkinson%E2%80%99s%20disease&journal=Ann.%20Neurol.&doi=10.1002%2Fana.21541&volume=64&pages=485-491&publication_year=2008&author=Burke%2CRE&author=Dauer%2CWT&author=Vonsattel%2CJP) 
  1. Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).
[Article](https://doi.org/10.1016%2FS0197-4580%2802%2900065-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12498954)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Staging%20of%20brain%20pathology%20related%20to%20sporadic%20Parkinson%E2%80%99s%20disease&journal=Neurobiol.%20Aging&doi=10.1016%2FS0197-4580%2802%2900065-9&volume=24&pages=197-211&publication_year=2003&author=Braak%2CH) 
  1. Kalaitzakis, M. E., Graeber, M. B., Gentleman, S. M. & Pearce, R. K. Evidence against a reliable staging system of alpha-synuclein pathology in Parkinson’s disease. Neuropathol. Appl. Neurobiol. 35, 125–126 (2009).
[Article](https://doi.org/10.1111%2Fj.1365-2990.2008.00998.x)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD1M7hsVGkuw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19187066)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Evidence%20against%20a%20reliable%20staging%20system%20of%20alpha-synuclein%20pathology%20in%20Parkinson%E2%80%99s%20disease&journal=Neuropathol.%20Appl.%20Neurobiol.&doi=10.1111%2Fj.1365-2990.2008.00998.x&volume=35&pages=125-126&publication_year=2009&author=Kalaitzakis%2CME&author=Graeber%2CMB&author=Gentleman%2CSM&author=Pearce%2CRK) 
  1. Kalaitzakis, M. E., Graeber, M. B., Gentleman, S. M. & Pearce, R. K. The dorsal motor nucleus of the vagus is not an obligatory trigger site of Parkinson’s disease: a critical analysis of alpha-synuclein staging. Neuropathol. Appl. Neurobiol. 34, 284–295 (2008).
[Article](https://doi.org/10.1111%2Fj.1365-2990.2007.00923.x)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD1c3osVejtg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18053026)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20dorsal%20motor%20nucleus%20of%20the%20vagus%20is%20not%20an%20obligatory%20trigger%20site%20of%20Parkinson%E2%80%99s%20disease%3A%20a%20critical%20analysis%20of%20alpha-synuclein%20staging&journal=Neuropathol.%20Appl.%20Neurobiol.&doi=10.1111%2Fj.1365-2990.2007.00923.x&volume=34&pages=284-295&publication_year=2008&author=Kalaitzakis%2CME&author=Graeber%2CMB&author=Gentleman%2CSM&author=Pearce%2CRK) 
  1. Prusiner, S. B. Prions. Proc. Natl. Acad. Sci. USA 95, 13363–13383 (1998).
[Article](https://doi.org/10.1073%2Fpnas.95.23.13363)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1cXnsVGhsbY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9811807)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC33918)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Prions&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.95.23.13363&volume=95&pages=13363-13383&publication_year=1998&author=Prusiner%2CSB) 
  1. Pan, K. M. et al. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc. Natl. Acad. Sci. USA 90, 10962–10966 (1993).
[Article](https://doi.org/10.1073%2Fpnas.90.23.10962)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2cXkvVCnug%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7902575)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC47901)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Conversion%20of%20alpha-helices%20into%20beta-sheets%20features%20in%20the%20formation%20of%20the%20scrapie%20prion%20proteins&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.90.23.10962&volume=90&pages=10962-10966&publication_year=1993&author=Pan%2CKM) 
  1. Nguyen, J., Baldwin, M. A., Cohen, F. E. & Prusiner, S. B. Prion protein peptides induce alpha-helix to beta-sheet conformational transitions. Biochemistry 34, 4186–4192 (1995).
[Article](https://doi.org/10.1021%2Fbi00013a006)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2MXks1Kis7k%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7703230)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Prion%20protein%20peptides%20induce%20alpha-helix%20to%20beta-sheet%20conformational%20transitions&journal=Biochemistry&doi=10.1021%2Fbi00013a006&volume=34&pages=4186-4192&publication_year=1995&author=Nguyen%2CJ&author=Baldwin%2CMA&author=Cohen%2CFE&author=Prusiner%2CSB) 
  1. Morillas, M., Vanik, D. L. & Surewicz, W. K. On the mechanism of alpha-helix to beta-sheet transition in the recombinant prion protein. Biochemistry 40, 6982–6987 (2001).
[Article](https://doi.org/10.1021%2Fbi010232q)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXjsFGnu7Y%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11389614)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=On%20the%20mechanism%20of%20alpha-helix%20to%20beta-sheet%20transition%20in%20the%20recombinant%20prion%20protein&journal=Biochemistry&doi=10.1021%2Fbi010232q&volume=40&pages=6982-6987&publication_year=2001&author=Morillas%2CM&author=Vanik%2CDL&author=Surewicz%2CWK) 
  1. Scott, M. et al. Transgenic mice expressing hamster prion protein produce species-specific scrapie infectivity and amyloid plaques. Cell 59, 847–857 (1989).
[Article](https://doi.org/10.1016%2F0092-8674%2889%2990608-9)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK3cXltlWhuw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2574076)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Transgenic%20mice%20expressing%20hamster%20prion%20protein%20produce%20species-specific%20scrapie%20infectivity%20and%20amyloid%20plaques&journal=Cell&doi=10.1016%2F0092-8674%2889%2990608-9&volume=59&pages=847-857&publication_year=1989&author=Scott%2CM) 
  1. Prusiner, S. B. Biology and genetics of prions causing neurodegeneration. Annu. Rev. Genet. 47, 601–623 (2013).
[Article](https://doi.org/10.1146%2Fannurev-genet-110711-155524)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhsFOhtg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24274755)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4010318)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Biology%20and%20genetics%20of%20prions%20causing%20neurodegeneration&journal=Annu.%20Rev.%20Genet.&doi=10.1146%2Fannurev-genet-110711-155524&volume=47&pages=601-623&publication_year=2013&author=Prusiner%2CSB) 
  1. Gambetti, P., Kong, Q., Zou, W., Parchi, P. & Chen, S. G. Sporadic and familial CJD: classification and characterisation. Br. Med. Bull. 66, 213–239 (2003).
[Article](https://doi.org/10.1093%2Fbmb%2F66.1.213)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXnvVeqtrk%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14522861)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Sporadic%20and%20familial%20CJD%3A%20classification%20and%20characterisation&journal=Br.%20Med.%20Bull.&doi=10.1093%2Fbmb%2F66.1.213&volume=66&pages=213-239&publication_year=2003&author=Gambetti%2CP&author=Kong%2CQ&author=Zou%2CW&author=Parchi%2CP&author=Chen%2CSG) 
  1. Ironside, J. W., Ritchie, D. L. & Head, M. W. Phenotypic variability in human prion diseases. Neuropathol. Appl. Neurobiol. 31, 565–579 (2005).
[Article](https://doi.org/10.1111%2Fj.1365-2990.2005.00697.x)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXhtlWmsbrI)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16281905)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Phenotypic%20variability%20in%20human%20prion%20diseases&journal=Neuropathol.%20Appl.%20Neurobiol.&doi=10.1111%2Fj.1365-2990.2005.00697.x&volume=31&pages=565-579&publication_year=2005&author=Ironside%2CJW&author=Ritchie%2CDL&author=Head%2CMW) 
  1. Brown, P., Cathala, F., Castaigne, P. & Gajdusek, D. C. Creutzfeldt-Jakob disease: clinical analysis of a consecutive series of 230 neuropathologically verified cases. Ann. Neurol. 20, 597–602 (1986).
[Article](https://doi.org/10.1002%2Fana.410200507)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaL2s%2FnsVOnsA%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3539001)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Creutzfeldt-Jakob%20disease%3A%20clinical%20analysis%20of%20a%20consecutive%20series%20of%20230%20neuropathologically%20verified%20cases&journal=Ann.%20Neurol.&doi=10.1002%2Fana.410200507&volume=20&pages=597-602&publication_year=1986&author=Brown%2CP&author=Cathala%2CF&author=Castaigne%2CP&author=Gajdusek%2CDC) 
  1. Irwin, D. J. et al. Evaluation of potential infectivity of Alzheimer and Parkinson disease proteins in recipients of cadaver-derived human growth hormone. JAMA Neurol. 70, 462–468 (2013).
[Article](https://doi.org/10.1001%2Fjamaneurol.2013.1933)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23380910)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3678373)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Evaluation%20of%20potential%20infectivity%20of%20Alzheimer%20and%20Parkinson%20disease%20proteins%20in%20recipients%20of%20cadaver-derived%20human%20growth%20hormone&journal=JAMA%20Neurol.&doi=10.1001%2Fjamaneurol.2013.1933&volume=70&pages=462-468&publication_year=2013&author=Irwin%2CDJ) 
  1. Olanow, C. W. & Brundin, P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov. Disord. 28, 31–40 (2013).
[Article](https://doi.org/10.1002%2Fmds.25373)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXjsVWhtrs%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23390095)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Parkinson%E2%80%99s%20disease%20and%20alpha%20synuclein%3A%20is%20Parkinson%E2%80%99s%20disease%20a%20prion-like%20disorder%3F&journal=Mov.%20Disord.&doi=10.1002%2Fmds.25373&volume=28&pages=31-40&publication_year=2013&author=Olanow%2CCW&author=Brundin%2CP) 
  1. Narkiewicz, J., Giachin, G. & Legname, G. In vitro aggregation assays for the characterization of alpha-synuclein prion-like properties. Prion 8, 19–32 (2014).
[Article](https://doi.org/10.4161%2Fpri.28125)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtVKmsrfK)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24552879)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4116381)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=In%20vitro%20aggregation%20assays%20for%20the%20characterization%20of%20alpha-synuclein%20prion-like%20properties&journal=Prion&doi=10.4161%2Fpri.28125&volume=8&pages=19-32&publication_year=2014&author=Narkiewicz%2CJ&author=Giachin%2CG&author=Legname%2CG) 
  1. Recasens, A. et al. Lewy body extracts from Parkinson disease brains trigger alpha-synuclein pathology and neurodegeneration in mice and monkeys. Ann. Neurol. 75, 351–362 (2014).
[Article](https://doi.org/10.1002%2Fana.24066)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXlvVSjt7k%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24243558)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lewy%20body%20extracts%20from%20Parkinson%20disease%20brains%20trigger%20alpha-synuclein%20pathology%20and%20neurodegeneration%20in%20mice%20and%20monkeys&journal=Ann.%20Neurol.&doi=10.1002%2Fana.24066&volume=75&pages=351-362&publication_year=2014&author=Recasens%2CA) 
  1. Osterberg, V. R. et al. Progressive aggregation of alpha-synuclein and selective degeneration of lewy inclusion-bearing neurons in a mouse model of parkinsonism. Cell Rep. 10, 1252–1260 (2015).
[Article](https://doi.org/10.1016%2Fj.celrep.2015.01.060)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXjs1Omt7w%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25732816)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351119)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Progressive%20aggregation%20of%20alpha-synuclein%20and%20selective%20degeneration%20of%20lewy%20inclusion-bearing%20neurons%20in%20a%20mouse%20model%20of%20parkinsonism&journal=Cell%20Rep.&doi=10.1016%2Fj.celrep.2015.01.060&volume=10&pages=1252-1260&publication_year=2015&author=Osterberg%2CVR) 
  1. Sacino, A. N. et al. Conformational templating of alpha-synuclein aggregates in neuronal-glial cultures. Mol. Neurodegener. 8, 17 (2013).
[Article](https://link.springer.com/doi/10.1186/1750-1326-8-17)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXpvFWlsrw%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23714769)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3671973)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Conformational%20templating%20of%20alpha-synuclein%20aggregates%20in%20neuronal-glial%20cultures&journal=Mol.%20Neurodegener.&doi=10.1186%2F1750-1326-8-17&volume=8&publication_year=2013&author=Sacino%2CAN) 
  1. Rodriguez, J. A. et al. Structure of the toxic core of alpha-synuclein from invisible crystals. Nature 525, 486–490 (2015).
[Article](https://doi.org/10.1038%2Fnature15368)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsVOls7zN)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26352473)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791177)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Structure%20of%20the%20toxic%20core%20of%20alpha-synuclein%20from%20invisible%20crystals&journal=Nature&doi=10.1038%2Fnature15368&volume=525&pages=486-490&publication_year=2015&author=Rodriguez%2CJA) 
  1. Theillet, F. X. et al. Structural disorder of monomeric alpha-synuclein persists in mammalian cells. Nature 530, 45–50 (2016).
[Article](https://doi.org/10.1038%2Fnature16531)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhsFyitLY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26808899)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Structural%20disorder%20of%20monomeric%20alpha-synuclein%20persists%20in%20mammalian%20cells&journal=Nature&doi=10.1038%2Fnature16531&volume=530&pages=45-50&publication_year=2016&author=Theillet%2CFX) 
  1. Periquet, M., Fulga, T., Myllykangas, L., Schlossmacher, M. G. & Feany, M. B. Aggregated alpha-synuclein mediates dopaminergic neurotoxicity in vivo. J. Neurosci. 27, 3338–3346 (2007).
[Article](https://doi.org/10.1523%2FJNEUROSCI.0285-07.2007)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXktlKntrg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17376994)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Aggregated%20alpha-synuclein%20mediates%20dopaminergic%20neurotoxicity%20in%20vivo&journal=J.%20Neurosci.&doi=10.1523%2FJNEUROSCI.0285-07.2007&volume=27&pages=3338-3346&publication_year=2007&author=Periquet%2CM&author=Fulga%2CT&author=Myllykangas%2CL&author=Schlossmacher%2CMG&author=Feany%2CMB) 
  1. Hawkes, C. H., Del Tredici, K. & Braak, H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol. Appl. Neurobiol. 33, 599–614 (2007).
[Article](https://doi.org/10.1111%2Fj.1365-2990.2007.00874.x)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD2snmsF2ltA%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17961138)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Parkinson%E2%80%99s%20disease%3A%20a%20dual-hit%20hypothesis&journal=Neuropathol.%20Appl.%20Neurobiol.&doi=10.1111%2Fj.1365-2990.2007.00874.x&volume=33&pages=599-614&publication_year=2007&author=Hawkes%2CCH&author=Tredici%2CK&author=Braak%2CH) 
  1. Braak, H., Ghebremedhin, E., Rub, U., Bratzke, H. & Del Tredici, K. Stages in the development of Parkinson’s disease-related pathology. Cell. Tissue. Res. 318, 121–134 (2004).
[Article](https://link.springer.com/doi/10.1007/s00441-004-0956-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15338272)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Stages%20in%20the%20development%20of%20Parkinson%E2%80%99s%20disease-related%20pathology&journal=Cell.%20Tissue.%20Res.&doi=10.1007%2Fs00441-004-0956-9&volume=318&pages=121-134&publication_year=2004&author=Braak%2CH&author=Ghebremedhin%2CE&author=Rub%2CU&author=Bratzke%2CH&author=Tredici%2CK) 
  1. Braak, H. & Del Tredici, K. Neuroanatomy and pathology of sporadic Parkinson’s disease. Adv. Anat. Embryol. Cell Biol. 201, 1–119 (2009).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19230552)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Neuroanatomy%20and%20pathology%20of%20sporadic%20Parkinson%E2%80%99s%20disease&journal=Adv.%20Anat.%20Embryol.%20Cell%20Biol.&volume=201&pages=1-119&publication_year=2009&author=Braak%2CH&author=Tredici%2CK) 
  1. Braak, H., Rub, U., Gai, W. P. & Del Tredici, K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J. Neural Transm. (Vienna) 110, 517–536 (2003).
[Article](https://link.springer.com/doi/10.1007/s00702-002-0808-2)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD3s3gt1GltQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Idiopathic%20Parkinson%E2%80%99s%20disease%3A%20possible%20routes%20by%20which%20vulnerable%20neuronal%20types%20may%20be%20subject%20to%20neuroinvasion%20by%20an%20unknown%20pathogen&journal=J.%20Neural%20Transm.%20%28Vienna%29&doi=10.1007%2Fs00702-002-0808-2&volume=110&pages=517-536&publication_year=2003&author=Braak%2CH&author=Rub%2CU&author=Gai%2CWP&author=Tredici%2CK) 
  1. Braak, H., de Vos, R. A., Bohl, J. & Del Tredici, K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci. Lett. 396, 67–72 (2006).
[Article](https://doi.org/10.1016%2Fj.neulet.2005.11.012)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XhsF2gurc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16330147)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Gastric%20alpha-synuclein%20immunoreactive%20inclusions%20in%20Meissner%E2%80%99s%20and%20Auerbach%E2%80%99s%20plexuses%20in%20cases%20staged%20for%20Parkinson%E2%80%99s%20disease-related%20brain%20pathology&journal=Neurosci.%20Lett.&doi=10.1016%2Fj.neulet.2005.11.012&volume=396&pages=67-72&publication_year=2006&author=Braak%2CH&author=Vos%2CRA&author=Bohl%2CJ&author=Tredici%2CK) 
  1. Jellinger, K. A. Critical evaluation of the Braak staging scheme for Parkinson’s disease. Ann. Neurol. 67, 550 (2010).
[Article](https://doi.org/10.1002%2Fana.21638)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20437592)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Critical%20evaluation%20of%20the%20Braak%20staging%20scheme%20for%20Parkinson%E2%80%99s%20disease&journal=Ann.%20Neurol.&doi=10.1002%2Fana.21638&volume=67&publication_year=2010&author=Jellinger%2CKA) 
  1. Alafuzoff, I. et al. Staging/typing of Lewy body related alpha-synuclein pathology: a study of the BrainNet Europe Consortium. Acta. Neuropathol. 117, 635–652 (2009).
[Article](https://link.springer.com/doi/10.1007/s00401-009-0523-2)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXlvFOksLs%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19330340)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Staging%2Ftyping%20of%20Lewy%20body%20related%20alpha-synuclein%20pathology%3A%20a%20study%20of%20the%20BrainNet%20Europe%20Consortium&journal=Acta.%20Neuropathol.&doi=10.1007%2Fs00401-009-0523-2&volume=117&pages=635-652&publication_year=2009&author=Alafuzoff%2CI) 
  1. Sampson, T. R. et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of Parkinson’s disease. Cell 167, 1469–1480 e1412 (2016).
[Article](https://doi.org/10.1016%2Fj.cell.2016.11.018)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XitVSms7fF)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27912057)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Gut%20microbiota%20regulate%20motor%20deficits%20and%20neuroinflammation%20in%20a%20model%20of%20Parkinson%E2%80%99s%20disease&journal=Cell&doi=10.1016%2Fj.cell.2016.11.018&volume=167&pages=1469-1480%20e1412&publication_year=2016&author=Sampson%2CTR) 
  1. Chen, S. G. et al. Exposure to the functional bacterial amyloid protein curli enhances alpha-synuclein aggregation in aged Fischer 344 rats and Caenorhabditis elegans. Sci. Rep. 6, 34477 (2016).
[Article](https://doi.org/10.1038%2Fsrep34477)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xhs1CgtLnF)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27708338)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5052651)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Exposure%20to%20the%20functional%20bacterial%20amyloid%20protein%20curli%20enhances%20alpha-synuclein%20aggregation%20in%20aged%20Fischer%20344%20rats%20and%20Caenorhabditis%20elegans&journal=Sci.%20Rep.&doi=10.1038%2Fsrep34477&volume=6&publication_year=2016&author=Chen%2CSG) 
  1. Wakabayashi, K., Takahashi, H., Takeda, S., Ohama, E. & Ikuta, F. Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol. 76, 217–221 (1988).
[Article](https://link.springer.com/doi/10.1007/BF00687767)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaL1M7gt1eqsA%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2850698)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Parkinson%E2%80%99s%20disease%3A%20the%20presence%20of%20Lewy%20bodies%20in%20Auerbach%E2%80%99s%20and%20Meissner%E2%80%99s%20plexuses&journal=Acta%20Neuropathol.&doi=10.1007%2FBF00687767&volume=76&pages=217-221&publication_year=1988&author=Wakabayashi%2CK&author=Takahashi%2CH&author=Takeda%2CS&author=Ohama%2CE&author=Ikuta%2CF) 
  1. Gelpi, E. et al. Multiple organ involvement by alpha-synuclein pathology in Lewy body disorders. Mov. Disord. 29, 1010–1018 (2014).
[Article](https://doi.org/10.1002%2Fmds.25776)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24395122)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Multiple%20organ%20involvement%20by%20alpha-synuclein%20pathology%20in%20Lewy%20body%20disorders&journal=Mov.%20Disord.&doi=10.1002%2Fmds.25776&volume=29&pages=1010-1018&publication_year=2014&author=Gelpi%2CE) 
  1. Navarro-Otano, J. et al. Alpha-synuclein aggregates in epicardial fat tissue in living subjects without parkinsonism. Parkinsonism Relat. Disord. 19, 27–31 (2013).
  1. Ulusoy, A. et al. Caudo-rostral brain spreading of alpha-synuclein through vagal connections. EMBO Mol. Med. 5, 1119–1127 (2013).
[Article](https://doi.org/10.1002%2Femmm.201302475)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23703938)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtVCgs7vP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Caudo-rostral%20brain%20spreading%20of%20alpha-synuclein%20through%20vagal%20connections&journal=EMBO%20Mol.%20Med.&doi=10.1002%2Femmm.201302475&volume=5&pages=1119-1127&publication_year=2013&author=Ulusoy%2CA) 
  1. Rey, N. L., Petit, G. H., Bousset, L., Melki, R. & Brundin, P. Transfer of human alpha-synuclein from the olfactory bulb to interconnected brain regions in mice. Acta Neuropathol. 126, 555–573 (2013).
[Article](https://link.springer.com/doi/10.1007/s00401-013-1160-3)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXht1eksLvJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23925565)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3789892)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Transfer%20of%20human%20alpha-synuclein%20from%20the%20olfactory%20bulb%20to%20interconnected%20brain%20regions%20in%20mice&journal=Acta%20Neuropathol.&doi=10.1007%2Fs00401-013-1160-3&volume=126&pages=555-573&publication_year=2013&author=Rey%2CNL&author=Petit%2CGH&author=Bousset%2CL&author=Melki%2CR&author=Brundin%2CP) 
  1. Sacino, A. N. et al. Intramuscular injection of alpha-synuclein induces CNS alpha-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc. Natl. Acad. Sci. USA 111, 10732–10737 (2014).
[Article](https://doi.org/10.1073%2Fpnas.1321785111)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtFCnsrvI)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25002524)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4115570)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Intramuscular%20injection%20of%20alpha-synuclein%20induces%20CNS%20alpha-synuclein%20pathology%20and%20a%20rapid-onset%20motor%20phenotype%20in%20transgenic%20mice&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1321785111&volume=111&pages=10732-10737&publication_year=2014&author=Sacino%2CAN) 
  1. Holmqvist, S. et al. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol. 128, 805–820 (2014).
[Article](https://link.springer.com/doi/10.1007/s00401-014-1343-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25296989)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Direct%20evidence%20of%20Parkinson%20pathology%20spread%20from%20the%20gastrointestinal%20tract%20to%20the%20brain%20in%20rats&journal=Acta%20Neuropathol.&doi=10.1007%2Fs00401-014-1343-6&volume=128&pages=805-820&publication_year=2014&author=Holmqvist%2CS) 
  1. Ulusoy, A. et al. Brain-to-stomach transfer of alpha-synuclein via vagal preganglionic projections. Acta Neuropathol. 133, 381–393 (2017).
[Article](https://link.springer.com/doi/10.1007/s00401-016-1661-y)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXpslGr)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28012041)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Brain-to-stomach%20transfer%20of%20alpha-synuclein%20via%20vagal%20preganglionic%20projections&journal=Acta%20Neuropathol.&doi=10.1007%2Fs00401-016-1661-y&volume=133&pages=381-393&publication_year=2017&author=Ulusoy%2CA) 
  1. Pan-Montojo, F. et al. Progression of Parkinson’s disease pathology is reproduced by intragastric administration of rotenone in mice. PLoS One 5, e8762 (2010).
[Article](https://doi.org/10.1371%2Fjournal.pone.0008762)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20098733)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2808242)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXht1egtbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Progression%20of%20Parkinson%E2%80%99s%20disease%20pathology%20is%20reproduced%20by%20intragastric%20administration%20of%20rotenone%20in%20mice&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0008762&volume=5&publication_year=2010&author=Pan-Montojo%2CF) 
  1. Pan-Montojo, F. et al. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci. Rep. 2, 898 (2012).
[Article](https://doi.org/10.1038%2Fsrep00898)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23205266)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3510466)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXmtVejsg%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Environmental%20toxins%20trigger%20PD-like%20progression%20via%20increased%20alpha-synuclein%20release%20from%20enteric%20neurons%20in%20mice&journal=Sci.%20Rep.&doi=10.1038%2Fsrep00898&volume=2&publication_year=2012&author=Pan-Montojo%2CF) 
  1. Svensson, E. et al. Vagotomy and subsequent risk of Parkinson’s disease. Ann. Neurol. 78, 522–529 (2015).
[Article](https://doi.org/10.1002%2Fana.24448)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26031848)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Vagotomy%20and%20subsequent%20risk%20of%20Parkinson%E2%80%99s%20disease&journal=Ann.%20Neurol.&doi=10.1002%2Fana.24448&volume=78&pages=522-529&publication_year=2015&author=Svensson%2CE) 
  1. Liu, B. et al. Vagotomy and Parkinson disease: a Swedish register-based matched-cohort study. Neurology 88, 1996–2002 (2017).
[Article](https://doi.org/10.1212%2FWNL.0000000000003961)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28446653)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440238)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Vagotomy%20and%20Parkinson%20disease%3A%20a%20Swedish%20register-based%20matched-cohort%20study&journal=Neurology&doi=10.1212%2FWNL.0000000000003961&volume=88&pages=1996-2002&publication_year=2017&author=Liu%2CB) 
  1. Shannon, K. M., Keshavarzian, A., Dodiya, H. B., Jakate, S. & Kordower, J. H. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov. Disord. 27, 716–719 (2012).
[Article](https://doi.org/10.1002%2Fmds.25020)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22550057)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Is%20alpha-synuclein%20in%20the%20colon%20a%20biomarker%20for%20premotor%20Parkinson%E2%80%99s%20disease%3F%20Evidence%20from%203%20cases&journal=Mov.%20Disord.&doi=10.1002%2Fmds.25020&volume=27&pages=716-719&publication_year=2012&author=Shannon%2CKM&author=Keshavarzian%2CA&author=Dodiya%2CHB&author=Jakate%2CS&author=Kordower%2CJH) 
  1. Barrenschee, M. et al. Distinct pattern of enteric phospho-alpha-synuclein aggregates and gene expression profiles in patients with Parkinson’s disease. Acta Neuropathol. Commun. 5, 1 (2017).
[Article](https://link.springer.com/doi/10.1186/s40478-016-0408-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28057070)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217296)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Distinct%20pattern%20of%20enteric%20phospho-alpha-synuclein%20aggregates%20and%20gene%20expression%20profiles%20in%20patients%20with%20Parkinson%E2%80%99s%20disease&journal=Acta%20Neuropathol.%20Commun.&doi=10.1186%2Fs40478-016-0408-2&volume=5&publication_year=2017&author=Barrenschee%2CM) 
  1. Schneider, S. A. et al. Can we use peripheral tissue biopsies to diagnose Parkinson’s disease? A review of the literature. Eur. J. Neurol. 23, 247–261 (2016).
[Article](https://doi.org/10.1111%2Fene.12753)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BC2MblvFyksg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26100920)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Can%20we%20use%20peripheral%20tissue%20biopsies%20to%20diagnose%20Parkinson%E2%80%99s%20disease%3F%20A%20review%20of%20the%20literature&journal=Eur.%20J.%20Neurol.&doi=10.1111%2Fene.12753&volume=23&pages=247-261&publication_year=2016&author=Schneider%2CSA) 
  1. Beach, T. G. et al. Multicenter assessment of immunohistochemical methods for pathological alpha-synuclein in sigmoid colon of Autopsied Parkinson’s disease and control subjects. J. Parkinsons Dis. 6, 761–770 (2016).
[Article](https://doi.org/10.3233%2FJPD-160888)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhslWiu7bN)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27589538)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5501392)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Multicenter%20assessment%20of%20immunohistochemical%20methods%20for%20pathological%20alpha-synuclein%20in%20sigmoid%20colon%20of%20Autopsied%20Parkinson%E2%80%99s%20disease%20and%20control%20subjects&journal=J.%20Parkinsons%20Dis.&doi=10.3233%2FJPD-160888&volume=6&pages=761-770&publication_year=2016&author=Beach%2CTG) 
  1. Menard, S., Cerf-Bensussan, N. & Heyman, M. Multiple facets of intestinal permeability and epithelial handling of dietary antigens. Mucosal Immunol. 3, 247–259 (2010).
[Article](https://doi.org/10.1038%2Fmi.2010.5)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXkvV2qurY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20404811)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Multiple%20facets%20of%20intestinal%20permeability%20and%20epithelial%20handling%20of%20dietary%20antigens&journal=Mucosal%20Immunol.&doi=10.1038%2Fmi.2010.5&volume=3&pages=247-259&publication_year=2010&author=Menard%2CS&author=Cerf-Bensussan%2CN&author=Heyman%2CM) 
  1. Foster, N. & Macpherson, G. G. Murine cecal patch M cells transport infectious prions in vivo. J. Infect. Dis. 202, 1916–1919 (2010).
[Article](https://doi.org/10.1086%2F657415)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXisFequw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21050122)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Murine%20cecal%20patch%20M%20cells%20transport%20infectious%20prions%20in%20vivo&journal=J.%20Infect.%20Dis.&doi=10.1086%2F657415&volume=202&pages=1916-1919&publication_year=2010&author=Foster%2CN&author=Macpherson%2CGG) 
  1. Miller, H., Zhang, J., Kuolee, R., Patel, G. B. & Chen, W. Intestinal M cells: the fallible sentinels? World J. Gastroenterol. 13, 1477–1486 (2007).
[Article](https://doi.org/10.3748%2Fwjg.v13.i10.1477)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXlslKqt70%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17461437)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1876659)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Intestinal%20M%20cells%3A%20the%20fallible%20sentinels%3F&journal=World%20J.%20Gastroenterol.&doi=10.3748%2Fwjg.v13.i10.1477&volume=13&pages=1477-1486&publication_year=2007&author=Miller%2CH&author=Zhang%2CJ&author=Kuolee%2CR&author=Patel%2CGB&author=Chen%2CW) 
  1. Donaldson, D. S. et al. M cell-depletion blocks oral prion disease pathogenesis. Mucosal Immunol. 5, 216–225 (2012).
[Article](https://doi.org/10.1038%2Fmi.2011.68)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xht1aqurY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22294048)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3282432)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=M%20cell-depletion%20blocks%20oral%20prion%20disease%20pathogenesis&journal=Mucosal%20Immunol.&doi=10.1038%2Fmi.2011.68&volume=5&pages=216-225&publication_year=2012&author=Donaldson%2CDS) 
  1. Beringue, V. et al. Facilitated cross-species transmission of prions in extraneural tissue. Science 335, 472–475 (2012).
[Article](https://doi.org/10.1126%2Fscience.1215659)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhtFajtr4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22282814)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Facilitated%20cross-species%20transmission%20of%20prions%20in%20extraneural%20tissue&journal=Science&doi=10.1126%2Fscience.1215659&volume=335&pages=472-475&publication_year=2012&author=Beringue%2CV) 
  1. Neutra, M. R., Mantis, N. J. & Kraehenbuhl, J. P. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat. Immunol. 2, 1004–1009 (2001).
[Article](https://doi.org/10.1038%2Fni1101-1004)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXotF2gsbg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11685223)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Collaboration%20of%20epithelial%20cells%20with%20organized%20mucosal%20lymphoid%20tissues&journal=Nat.%20Immunol.&doi=10.1038%2Fni1101-1004&volume=2&pages=1004-1009&publication_year=2001&author=Neutra%2CMR&author=Mantis%2CNJ&author=Kraehenbuhl%2CJP) 
  1. Sicinski, P. et al. Poliovirus type 1 enters the human host through intestinal M cells. Gastroenterology 98, 56–58 (1990).
[Article](https://doi.org/10.1016%2F0016-5085%2890%2991290-M)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK3c%2Fns1ygtA%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2152776)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Poliovirus%20type%201%20enters%20the%20human%20host%20through%20intestinal%20M%20cells&journal=Gastroenterology&doi=10.1016%2F0016-5085%2890%2991290-M&volume=98&pages=56-58&publication_year=1990&author=Sicinski%2CP) 
  1. Chen, S. W. et al. Structural characterization of toxic oligomers that are kinetically trapped during alpha-synuclein fibril formation. Proc. Natl. Acad. Sci. USA 112, E1994–E2003 (2015).
[Article](https://doi.org/10.1073%2Fpnas.1421204112)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXmtVaqsrw%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25855634)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4413268)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Structural%20characterization%20of%20toxic%20oligomers%20that%20are%20kinetically%20trapped%20during%20alpha-synuclein%20fibril%20formation&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1421204112&volume=112&pages=E1994-E2003&publication_year=2015&author=Chen%2CSW) 
  1. Bogunovic, M. et al. Origin of the lamina propria dendritic cell network. Immunity 31, 513–525 (2009).
[Article](https://doi.org/10.1016%2Fj.immuni.2009.08.010)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhsVejtL7P)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19733489)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2778256)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Origin%20of%20the%20lamina%20propria%20dendritic%20cell%20network&journal=Immunity&doi=10.1016%2Fj.immuni.2009.08.010&volume=31&pages=513-525&publication_year=2009&author=Bogunovic%2CM) 
  1. Huang, F. P., Farquhar, C. F., Mabbott, N. A., Bruce, M. E. & MacPherson, G. G. Migrating intestinal dendritic cells transport PrP(Sc) from the gut. J. Gen. Virol. 83, 267–271 (2002).
[Article](https://doi.org/10.1099%2F0022-1317-83-1-267)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD38Xlt1Gkug%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11752724)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Migrating%20intestinal%20dendritic%20cells%20transport%20PrP%28Sc%29%20from%20the%20gut&journal=J.%20Gen.%20Virol.&doi=10.1099%2F0022-1317-83-1-267&volume=83&pages=267-271&publication_year=2002&author=Huang%2CFP&author=Farquhar%2CCF&author=Mabbott%2CNA&author=Bruce%2CME&author=MacPherson%2CGG) 
  1. Wood, H. Parkinson disease: LAG3 facilitates cell-to-cell spread of alpha-synuclein pathology. Nat. Rev. Neurol. 12, 678 (2016).
[Article](https://doi.org/10.1038%2Fnrneurol.2016.164)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhslGgs7nL)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27767033)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Parkinson%20disease%3A%20LAG3%20facilitates%20cell-to-cell%20spread%20of%20alpha-synuclein%20pathology&journal=Nat.%20Rev.%20Neurol.&doi=10.1038%2Fnrneurol.2016.164&volume=12&publication_year=2016&author=Wood%2CH) 
  1. Huang, C. T. et al. Role of LAG-3 in regulatory T cells. Immunity 21, 503–513 (2004).
[Article](https://doi.org/10.1016%2Fj.immuni.2004.08.010)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXpvVygtL4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15485628)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20LAG-3%20in%20regulatory%20T%20cells&journal=Immunity&doi=10.1016%2Fj.immuni.2004.08.010&volume=21&pages=503-513&publication_year=2004&author=Huang%2CCT) 
  1. Kisielow, M., Kisielow, J., Capoferri-Sollami, G. & Karjalainen, K. Expression of lymphocyte activation gene 3 (LAG-3) on B cells is induced by T cells. Eur. J. Immunol. 35, 2081–2088 (2005).
[Article](https://doi.org/10.1002%2Feji.200526090)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXmvVejurc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15971272)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Expression%20of%20lymphocyte%20activation%20gene%203%20%28LAG-3%29%20on%20B%20cells%20is%20induced%20by%20T%20cells&journal=Eur.%20J.%20Immunol.&doi=10.1002%2Feji.200526090&volume=35&pages=2081-2088&publication_year=2005&author=Kisielow%2CM&author=Kisielow%2CJ&author=Capoferri-Sollami%2CG&author=Karjalainen%2CK) 
  1. Workman, C. J. et al. LAG-3 regulates plasmacytoid dendritic cell homeostasis. J. Immunol. 182, 1885–1891 (2009).
[Article](https://doi.org/10.4049%2Fjimmunol.0800185)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhsFKktb8%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19201841)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2675170)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=LAG-3%20regulates%20plasmacytoid%20dendritic%20cell%20homeostasis&journal=J.%20Immunol.&doi=10.4049%2Fjimmunol.0800185&volume=182&pages=1885-1891&publication_year=2009&author=Workman%2CCJ) 
  1. Houser, M. C. & Tansey, M. G. The gut-brain axis: is intestinal inflammation a silent driver of Parkinson’s disease pathogenesis? NPJ Parkinsons Dis. 3, 3 (2017).
[Article](https://doi.org/10.1038%2Fs41531-016-0002-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28649603)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5445611)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20gut-brain%20axis%3A%20is%20intestinal%20inflammation%20a%20silent%20driver%20of%20Parkinson%E2%80%99s%20disease%20pathogenesis%3F&journal=NPJ%20Parkinsons%20Dis.&doi=10.1038%2Fs41531-016-0002-0&volume=3&publication_year=2017&author=Houser%2CMC&author=Tansey%2CMG) 
  1. Desai, M. S. et al. A Dietary Fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167, 1339–1353 e1321 (2016).
[Article](https://doi.org/10.1016%2Fj.cell.2016.10.043)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhvFWgu7nM)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27863247)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131798)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20Dietary%20Fiber-deprived%20gut%20microbiota%20degrades%20the%20colonic%20mucus%20barrier%20and%20enhances%20pathogen%20susceptibility&journal=Cell&doi=10.1016%2Fj.cell.2016.10.043&volume=167&pages=1339-1353%20e1321&publication_year=2016&author=Desai%2CMS) 
  1. Sulzer, D. et al. T cells from patients with Parkinson’s disease recognize alpha-synuclein peptides. Nature 546, 656–661 (2017).
[Article](https://doi.org/10.1038%2Fnature22815)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtVequrbO)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28636593)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=T%20cells%20from%20patients%20with%20Parkinson%E2%80%99s%20disease%20recognize%20alpha-synuclein%20peptides&journal=Nature&doi=10.1038%2Fnature22815&volume=546&pages=656-661&publication_year=2017&author=Sulzer%2CD) 
  1. Mu, Q., Kirby, J., Reilly, C. M. & Luo, X. M. Leaky gut as a danger signal for autoimmune diseases. Front. Immunol. 8, 598 (2017).
[Article](https://doi.org/10.3389%2Ffimmu.2017.00598)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28588585)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5440529)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Leaky%20gut%20as%20a%20danger%20signal%20for%20autoimmune%20diseases&journal=Front.%20Immunol.&doi=10.3389%2Ffimmu.2017.00598&volume=8&publication_year=2017&author=Mu%2CQ&author=Kirby%2CJ&author=Reilly%2CCM&author=Luo%2CXM) 
  1. Bieri, G., Gitler, A. D. & Brahic, M. Internalization, axonal transport and release of fibrillar forms of alpha-synuclein. Neurobiol. Dis. In press (2017).
  1. van Rooijen, B. D., Claessens, M. M. & Subramaniam, V. Lipid bilayer disruption by oligomeric alpha-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochim. Biophys. Acta 1788, 1271–1278 (2009).
[Article](https://doi.org/10.1016%2Fj.bbamem.2009.03.010)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19328772)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXmtlCjsL8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lipid%20bilayer%20disruption%20by%20oligomeric%20alpha-synuclein%20depends%20on%20bilayer%20charge%20and%20accessibility%20of%20the%20hydrophobic%20core&journal=Biochim.%20Biophys.%20Acta&doi=10.1016%2Fj.bbamem.2009.03.010&volume=1788&pages=1271-1278&publication_year=2009&author=Rooijen%2CBD&author=Claessens%2CMM&author=Subramaniam%2CV) 
  1. Holmes, B. B. et al. Heparan sulfate proteoglycans mediate internalization and propagation of specific proteopathic seeds. Proc. Natl. Acad. Sci. USA 110, E3138–E3147 (2013).
[Article](https://doi.org/10.1073%2Fpnas.1301440110)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtlCrtbfL)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23898162)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3746848)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Heparan%20sulfate%20proteoglycans%20mediate%20internalization%20and%20propagation%20of%20specific%20proteopathic%20seeds&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1301440110&volume=110&pages=E3138-E3147&publication_year=2013&author=Holmes%2CBB) 
  1. Bode, L., Murch, S. & Freeze, H. H. Heparan sulfate plays a central role in a dynamic in vitro model of protein-losing enteropathy. J. Biol. Chem. 281, 7809–7815 (2006).
[Article](https://doi.org/10.1074%2Fjbc.M510722200)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28Xitl2ktr4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16434407)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Heparan%20sulfate%20plays%20a%20central%20role%20in%20a%20dynamic%20in%20vitro%20model%20of%20protein-losing%20enteropathy&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M510722200&volume=281&pages=7809-7815&publication_year=2006&author=Bode%2CL&author=Murch%2CS&author=Freeze%2CHH) 
  1. Bode, L. et al. Heparan sulfate and syndecan-1 are essential in maintaining murine and human intestinal epithelial barrier function. J. Clin. Invest. 118, 229–238 (2008).
[Article](https://doi.org/10.1172%2FJCI32335)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXksFOluw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18064305)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Heparan%20sulfate%20and%20syndecan-1%20are%20essential%20in%20maintaining%20murine%20and%20human%20intestinal%20epithelial%20barrier%20function&journal=J.%20Clin.%20Invest.&doi=10.1172%2FJCI32335&volume=118&pages=229-238&publication_year=2008&author=Bode%2CL) 
  1. Garcia, B. et al. Surface proteoglycans as mediators in bacterial pathogens infections. Front. Microbiol. 7, 220 (2016).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26941735)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4764700)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Surface%20proteoglycans%20as%20mediators%20in%20bacterial%20pathogens%20infections&journal=Front.%20Microbiol.&volume=7&publication_year=2016&author=Garcia%2CB) 
  1. Schonberger, O. et al. Novel heparan mimetics potently inhibit the scrapie prion protein and its endocytosis. Biochem. Biophys. Res. Commun. 312, 473–479 (2003).
[Article](https://doi.org/10.1016%2Fj.bbrc.2003.10.150)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXptVelurs%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14637161)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Novel%20heparan%20mimetics%20potently%20inhibit%20the%20scrapie%20prion%20protein%20and%20its%20endocytosis&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2003.10.150&volume=312&pages=473-479&publication_year=2003&author=Schonberger%2CO) 
  1. Horonchik, L. et al. Heparan sulfate is a cellular receptor for purified infectious prions. J. Biol. Chem. 280, 17062–17067 (2005).
[Article](https://doi.org/10.1074%2Fjbc.M500122200)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXjsFOgt7s%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15668247)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Heparan%20sulfate%20is%20a%20cellular%20receptor%20for%20purified%20infectious%20prions&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M500122200&volume=280&pages=17062-17067&publication_year=2005&author=Horonchik%2CL) 
  1. Busch, D. J. & Morgan, J. R. Synuclein accumulation is associated with cell-specific neuronal death after spinal cord injury. J. Comp. Neurol. 520, 1751–1771 (2012).
[Article](https://doi.org/10.1002%2Fcne.23011)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XkvVCnu74%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22120153)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Synuclein%20accumulation%20is%20associated%20with%20cell-specific%20neuronal%20death%20after%20spinal%20cord%20injury&journal=J.%20Comp.%20Neurol.&doi=10.1002%2Fcne.23011&volume=520&pages=1751-1771&publication_year=2012&author=Busch%2CDJ&author=Morgan%2CJR) 
  1. Yuan, J. & Zhao, Y. Evolutionary aspects of the synuclein super-family and sub-families based on large-scale phylogenetic and group-discrimination analysis. Biochem. Biophys. Res. Commun. 441, 308–317 (2013).
[Article](https://doi.org/10.1016%2Fj.bbrc.2013.09.132)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhslejt7%2FO)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24140056)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Evolutionary%20aspects%20of%20the%20synuclein%20super-family%20and%20sub-families%20based%20on%20large-scale%20phylogenetic%20and%20group-discrimination%20analysis&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2013.09.132&volume=441&pages=308-317&publication_year=2013&author=Yuan%2CJ&author=Zhao%2CY) 
  1. Calabrese, G., Mesner, L. D., Foley, P. L., Rosen, C. J. & Farber, C. R. Network analysis implicates alpha-synuclein (snca) in the regulation of ovariectomy-induced bone loss. Sci. Rep. 6, 29475 (2016).
[Article](https://doi.org/10.1038%2Fsrep29475)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhtFCrs7bJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27378017)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4932518)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Network%20analysis%20implicates%20alpha-synuclein%20%28snca%29%20in%20the%20regulation%20of%20ovariectomy-induced%20bone%20loss&journal=Sci.%20Rep.&doi=10.1038%2Fsrep29475&volume=6&publication_year=2016&author=Calabrese%2CG&author=Mesner%2CLD&author=Foley%2CPL&author=Rosen%2CCJ&author=Farber%2CCR) 
  1. Nakai, M. et al. Expression of alpha-synuclein, a presynaptic protein implicated in Parkinson’s disease, in erythropoietic lineage. Biochem. Biophys. Res. Commun. 358, 104–110 (2007).
[Article](https://doi.org/10.1016%2Fj.bbrc.2007.04.108)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXlt1ers7w%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17475220)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Expression%20of%20alpha-synuclein%2C%20a%20presynaptic%20protein%20implicated%20in%20Parkinson%E2%80%99s%20disease%2C%20in%20erythropoietic%20lineage&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2007.04.108&volume=358&pages=104-110&publication_year=2007&author=Nakai%2CM) 
  1. Askanas, V., Engel, W. K., Alvarez, R. B., McFerrin, J. & Broccolini, A. Novel immunolocalization of alpha-synuclein in human muscle of inclusion-body myositis, regenerating and necrotic muscle fibers, and at neuromuscular junctions. J. Neuropathol. Exp. Neurol. 59, 592–598 (2000).
[Article](https://doi.org/10.1093%2Fjnen%2F59.7.592)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXltlKqs7o%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10901230)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Novel%20immunolocalization%20of%20alpha-synuclein%20in%20human%20muscle%20of%20inclusion-body%20myositis%2C%20regenerating%20and%20necrotic%20muscle%20fibers%2C%20and%20at%20neuromuscular%20junctions&journal=J.%20Neuropathol.%20Exp.%20Neurol.&doi=10.1093%2Fjnen%2F59.7.592&volume=59&pages=592-598&publication_year=2000&author=Askanas%2CV&author=Engel%2CWK&author=Alvarez%2CRB&author=McFerrin%2CJ&author=Broccolini%2CA) 
  1. Gonzalez-Freire, M. et al. The Human Skeletal Muscle Proteome Project: a reappraisal of the current literature. J. Cachexia Sarcopenia Muscle 8, 5–18 (2017).
[Article](https://doi.org/10.1002%2Fjcsm.12121)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27897395)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20Human%20Skeletal%20Muscle%20Proteome%20Project%3A%20a%20reappraisal%20of%20the%20current%20literature&journal=J.%20Cachexia%20Sarcopenia%20Muscle&doi=10.1002%2Fjcsm.12121&volume=8&pages=5-18&publication_year=2017&author=Gonzalez-Freire%2CM) 
  1. Tacoma, R., Fields, J., Ebenstein, D. B., Lam, Y. W. & Greenwood, S. L. Characterization of the bovine milk proteome in early-lactation Holstein and Jersey breeds of dairy cows. J. Proteomics 130, 200–210 (2016).
[Article](https://doi.org/10.1016%2Fj.jprot.2015.09.024)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhs1Kisb3K)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26391770)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Characterization%20of%20the%20bovine%20milk%20proteome%20in%20early-lactation%20Holstein%20and%20Jersey%20breeds%20of%20dairy%20cows&journal=J.%20Proteomics&doi=10.1016%2Fj.jprot.2015.09.024&volume=130&pages=200-210&publication_year=2016&author=Tacoma%2CR&author=Fields%2CJ&author=Ebenstein%2CDB&author=Lam%2CYW&author=Greenwood%2CSL) 
  1. Nakajo, S. et al. Purification and characterization of a novel brain-specific 14-kDa protein. J. Neurochem. 55, 2031–2038 (1990).
[Article](https://doi.org/10.1111%2Fj.1471-4159.1990.tb05792.x)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK3MXjvVShsw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2230807)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Purification%20and%20characterization%20of%20a%20novel%20brain-specific%2014-kDa%20protein&journal=J.%20Neurochem.&doi=10.1111%2Fj.1471-4159.1990.tb05792.x&volume=55&pages=2031-2038&publication_year=1990&author=Nakajo%2CS) 
  1. Iwai, A. et al. The precursor protein of non-A beta component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14, 467–475 (1995).
[Article](https://doi.org/10.1016%2F0896-6273%2895%2990302-X)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2MXjvFejsLY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7857654)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20precursor%20protein%20of%20non-A%20beta%20component%20of%20Alzheimer%E2%80%99s%20disease%20amyloid%20is%20a%20presynaptic%20protein%20of%20the%20central%20nervous%20system&journal=Neuron&doi=10.1016%2F0896-6273%2895%2990302-X&volume=14&pages=467-475&publication_year=1995&author=Iwai%2CA) 
  1. Hashimoto, M. et al. NACP, a synaptic protein involved in Alzheimer’s disease, is differentially regulated during megakaryocyte differentiation. Biochem. Biophys. Res. Commun. 237, 611–616 (1997).
[Article](https://doi.org/10.1006%2Fbbrc.1997.6978)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2sXmtV2gsLc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9299413)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=NACP%2C%20a%20synaptic%20protein%20involved%20in%20Alzheimer%E2%80%99s%20disease%2C%20is%20differentially%20regulated%20during%20megakaryocyte%20differentiation&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1006%2Fbbrc.1997.6978&volume=237&pages=611-616&publication_year=1997&author=Hashimoto%2CM) 
  1. Barbour, R. et al. Red blood cells are the major source of alpha-synuclein in blood. Neurodegener. Dis. 5, 55–59 (2008).
[Article](https://doi.org/10.1159%2F000112832)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXhsFyqtLo%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18182779)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Red%20blood%20cells%20are%20the%20major%20source%20of%20alpha-synuclein%20in%20blood&journal=Neurodegener.%20Dis.&doi=10.1159%2F000112832&volume=5&pages=55-59&publication_year=2008&author=Barbour%2CR) 
  1. Mu, L. et al. Alpha-synuclein pathology and axonal degeneration of the peripheral motor nerves innervating pharyngeal muscles in Parkinson disease. J. Neuropathol. Exp. Neurol. 72, 119–129 (2013).
[Article](https://doi.org/10.1097%2FNEN.0b013e3182801cde)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhsFSju7c%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23334595)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3552335)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alpha-synuclein%20pathology%20and%20axonal%20degeneration%20of%20the%20peripheral%20motor%20nerves%20innervating%20pharyngeal%20muscles%20in%20Parkinson%20disease&journal=J.%20Neuropathol.%20Exp.%20Neurol.&doi=10.1097%2FNEN.0b013e3182801cde&volume=72&pages=119-129&publication_year=2013&author=Mu%2CL) 
  1. Warriss, P. D. Exsanguination of animals at slaughter and the residual blood content of meat. Vet. Rec. 115, 292–295 (1984).
[Article](https://doi.org/10.1136%2Fvr.115.12.292)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaL2M%2FktF2jsg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6495586)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Exsanguination%20of%20animals%20at%20slaughter%20and%20the%20residual%20blood%20content%20of%20meat&journal=Vet.%20Rec.&doi=10.1136%2Fvr.115.12.292&volume=115&pages=292-295&publication_year=1984&author=Warriss%2CPD) 
  1. Polymeropoulos, M. H. et al. Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276, 2045–2047 (1997).
[Article](https://doi.org/10.1126%2Fscience.276.5321.2045)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2sXkt1altr4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9197268)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mutation%20in%20the%20alpha-synuclein%20gene%20identified%20in%20families%20with%20Parkinson%E2%80%99s%20disease&journal=Science&doi=10.1126%2Fscience.276.5321.2045&volume=276&pages=2045-2047&publication_year=1997&author=Polymeropoulos%2CMH) 
  1. Polymeropoulos, M. H. et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23. Science 274, 1197–1199 (1996).
[Article](https://doi.org/10.1126%2Fscience.274.5290.1197)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK28XmvVyit74%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8895469)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mapping%20of%20a%20gene%20for%20Parkinson%E2%80%99s%20disease%20to%20chromosome%204q21-q23&journal=Science&doi=10.1126%2Fscience.274.5290.1197&volume=274&pages=1197-1199&publication_year=1996&author=Polymeropoulos%2CMH) 
  1. Narhi, L. et al. Both familial Parkinson’s disease mutations accelerate alpha-synuclein aggregation. J. Biol. Chem. 274, 9843–9846 (1999).
[Article](https://doi.org/10.1074%2Fjbc.274.14.9843)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1MXisVWks7o%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10092675)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Both%20familial%20Parkinson%E2%80%99s%20disease%20mutations%20accelerate%20alpha-synuclein%20aggregation&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.274.14.9843&volume=274&pages=9843-9846&publication_year=1999&author=Narhi%2CL) 
  1. Conway, K. A., Harper, J. D. & Lansbury, P. T. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat. Med. 4, 1318–1320 (1998).
[Article](https://doi.org/10.1038%2F3311)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1cXntlakur0%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9809558)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Accelerated%20in%20vitro%20fibril%20formation%20by%20a%20mutant%20alpha-synuclein%20linked%20to%20early-onset%20Parkinson%20disease&journal=Nat.%20Med.&doi=10.1038%2F3311&volume=4&pages=1318-1320&publication_year=1998&author=Conway%2CKA&author=Harper%2CJD&author=Lansbury%2CPT) 
  1. Conway, K. A. et al. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc. Natl. Acad. Sci. USA 97, 571–576 (2000).
[Article](https://doi.org/10.1073%2Fpnas.97.2.571)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXot1ajtw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10639120)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC15371)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Acceleration%20of%20oligomerization%2C%20not%20fibrillization%2C%20is%20a%20shared%20property%20of%20both%20alpha-synuclein%20mutations%20linked%20to%20early-onset%20Parkinson%E2%80%99s%20disease%3A%20implications%20for%20pathogenesis%20and%20therapy&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.97.2.571&volume=97&pages=571-576&publication_year=2000&author=Conway%2CKA) 
  1. Lashuel, H. A. et al. Alpha-synuclein, especially the Parkinson’s disease-associated mutants, forms pore-like annular and tubular protofibrils. J. Mol. Biol. 322, 1089–1102 (2002).
[Article](https://doi.org/10.1016%2FS0022-2836%2802%2900735-0)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD38XnsVant7c%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12367530)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alpha-synuclein%2C%20especially%20the%20Parkinson%E2%80%99s%20disease-associated%20mutants%2C%20forms%20pore-like%20annular%20and%20tubular%20protofibrils&journal=J.%20Mol.%20Biol.&doi=10.1016%2FS0022-2836%2802%2900735-0&volume=322&pages=1089-1102&publication_year=2002&author=Lashuel%2CHA) 
  1. Flagmeier, P. et al. Mutations associated with familial Parkinson’s disease alter the initiation and amplification steps of alpha-synuclein aggregation. Proc. Natl. Acad. Sci. USA 113, 10328–10333 (2016).
[Article](https://doi.org/10.1073%2Fpnas.1604645113)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhsVWks7jL)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27573854)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5027465)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mutations%20associated%20with%20familial%20Parkinson%E2%80%99s%20disease%20alter%20the%20initiation%20and%20amplification%20steps%20of%20alpha-synuclein%20aggregation&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1604645113&volume=113&pages=10328-10333&publication_year=2016&author=Flagmeier%2CP) 
  1. Siddiqui, I. J., Pervaiz, N. & Abbasi, A. A. The Parkinson disease gene SNCA: evolutionary and structural insights with pathological implication. Sci. Rep. 6, 24475 (2016).
[Article](https://doi.org/10.1038%2Fsrep24475)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xmt1eiurc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27080380)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4832246)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20Parkinson%20disease%20gene%20SNCA%3A%20evolutionary%20and%20structural%20insights%20with%20pathological%20implication&journal=Sci.%20Rep.&doi=10.1038%2Fsrep24475&volume=6&publication_year=2016&author=Siddiqui%2CIJ&author=Pervaiz%2CN&author=Abbasi%2CAA) 
  1. Uversky, V. N., Li, J. & Fink, A. L. Evidence for a partially folded intermediate in alpha-synuclein fibril formation. J. Biol. Chem. 276, 10737–10744 (2001).
[Article](https://doi.org/10.1074%2Fjbc.M010907200)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXjvFCqtLs%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11152691)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Evidence%20for%20a%20partially%20folded%20intermediate%20in%20alpha-synuclein%20fibril%20formation&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M010907200&volume=276&pages=10737-10744&publication_year=2001&author=Uversky%2CVN&author=Li%2CJ&author=Fink%2CAL) 
  1. Rochet, J. C., Conway, K. A. & Lansbury, P. T. Jr. Inhibition of fibrillization and accumulation of prefibrillar oligomers in mixtures of human and mouse alpha-synuclein. Biochemistry 39, 10619–10626 (2000).
[Article](https://doi.org/10.1021%2Fbi001315u)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXlsVKlur4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10978144)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20fibrillization%20and%20accumulation%20of%20prefibrillar%20oligomers%20in%20mixtures%20of%20human%20and%20mouse%20alpha-synuclein&journal=Biochemistry&doi=10.1021%2Fbi001315u&volume=39&pages=10619-10626&publication_year=2000&author=Rochet%2CJC&author=Conway%2CKA&author=Lansbury%2CPT) 
  1. Kang, L., Wu, K. P., Vendruscolo, M. & Baum, J. The A53T mutation is key in defining the differences in the aggregation kinetics of human and mouse alpha-synuclein. J. Am. Chem. Soc. 133, 13465–13470 (2011).
[Article](https://doi.org/10.1021%2Fja203979j)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXpvFSntL4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21721555)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3205953)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20A53T%20mutation%20is%20key%20in%20defining%20the%20differences%20in%20the%20aggregation%20kinetics%20of%20human%20and%20mouse%20alpha-synuclein&journal=J.%20Am.%20Chem.%20Soc.&doi=10.1021%2Fja203979j&volume=133&pages=13465-13470&publication_year=2011&author=Kang%2CL&author=Wu%2CKP&author=Vendruscolo%2CM&author=Baum%2CJ) 
  1. Luk, K. C. et al. Molecular and biological compatibility with host alpha-synuclein influences fibril pathogenicity. Cell Rep. 16, 3373–3387 (2016).
[Article](https://doi.org/10.1016%2Fj.celrep.2016.08.053)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhsFClsrvE)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27653697)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5087609)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Molecular%20and%20biological%20compatibility%20with%20host%20alpha-synuclein%20influences%20fibril%20pathogenicity&journal=Cell%20Rep.&doi=10.1016%2Fj.celrep.2016.08.053&volume=16&pages=3373-3387&publication_year=2016&author=Luk%2CKC) 
  1. van der Putten, H. et al. Neuropathology in mice expressing human alpha-synuclein. J. Neurosci. 20, 6021–6029 (2000).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10934251)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Neuropathology%20in%20mice%20expressing%20human%20alpha-synuclein&journal=J.%20Neurosci.&volume=20&pages=6021-6029&publication_year=2000&author=Putten%2CH) 
  1. Rieker, C. et al. Neuropathology in mice expressing mouse alpha-synuclein. PLoS One 6, e24834 (2011).
[Article](https://doi.org/10.1371%2Fjournal.pone.0024834)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhtleis7vL)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21966373)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3180287)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Neuropathology%20in%20mice%20expressing%20mouse%20alpha-synuclein&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0024834&volume=6&publication_year=2011&author=Rieker%2CC) 
  1. Yoritaka, A. et al. Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. USA 93, 2696–2701 (1996).
[Article](https://doi.org/10.1073%2Fpnas.93.7.2696)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK28XitVCis7Y%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8610103)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC39693)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Immunohistochemical%20detection%20of%204-hydroxynonenal%20protein%20adducts%20in%20Parkinson%20disease&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.93.7.2696&volume=93&pages=2696-2701&publication_year=1996&author=Yoritaka%2CA) 
  1. Floor, E. & Wetzel, M. G. Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay. J. Neurochem. 70, 268–275 (1998).
[Article](https://doi.org/10.1046%2Fj.1471-4159.1998.70010268.x)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1cXmt1Wg)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9422371)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Increased%20protein%20oxidation%20in%20human%20substantia%20nigra%20pars%20compacta%20in%20comparison%20with%20basal%20ganglia%20and%20prefrontal%20cortex%20measured%20with%20an%20improved%20dinitrophenylhydrazine%20assay&journal=J.%20Neurochem.&doi=10.1046%2Fj.1471-4159.1998.70010268.x&volume=70&pages=268-275&publication_year=1998&author=Floor%2CE&author=Wetzel%2CMG) 
  1. Alam, Z. I. et al. Oxidative DNA damage in the parkinsonian brain: an apparent selective increase in 8-hydroxyguanine levels in substantia nigra. J. Neurochem. 69, 1196–1203 (1997).
[Article](https://doi.org/10.1046%2Fj.1471-4159.1997.69031196.x)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2sXls1Chtbs%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9282943)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oxidative%20DNA%20damage%20in%20the%20parkinsonian%20brain%3A%20an%20apparent%20selective%20increase%20in%208-hydroxyguanine%20levels%20in%20substantia%20nigra&journal=J.%20Neurochem.&doi=10.1046%2Fj.1471-4159.1997.69031196.x&volume=69&pages=1196-1203&publication_year=1997&author=Alam%2CZI) 
  1. Souza, J. M., Giasson, B. I., Chen, Q., Lee, V. M. & Ischiropoulos, H. Dityrosine cross-linking promotes formation of stable alpha -synuclein polymers. Implication of nitrative and oxidative stress in the pathogenesis of neurodegenerative synucleinopathies. J. Biol. Chem. 275, 18344–18349 (2000).
[Article](https://doi.org/10.1074%2Fjbc.M000206200)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXktlymurc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10747881)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dityrosine%20cross-linking%20promotes%20formation%20of%20stable%20alpha%20-synuclein%20polymers.%20Implication%20of%20nitrative%20and%20oxidative%20stress%20in%20the%20pathogenesis%20of%20neurodegenerative%20synucleinopathies&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M000206200&volume=275&pages=18344-18349&publication_year=2000&author=Souza%2CJM&author=Giasson%2CBI&author=Chen%2CQ&author=Lee%2CVM&author=Ischiropoulos%2CH) 
  1. Al-Hilaly, Y. K. et al. The involvement of dityrosine crosslinking in alpha-synuclein assembly and deposition in Lewy Bodies in Parkinson’s disease. Sci. Rep. 6, 39171 (2016).
[Article](https://doi.org/10.1038%2Fsrep39171)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XitFGjsLnN)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27982082)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5159849)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20involvement%20of%20dityrosine%20crosslinking%20in%20alpha-synuclein%20assembly%20and%20deposition%20in%20Lewy%20Bodies%20in%20Parkinson%E2%80%99s%20disease&journal=Sci.%20Rep.&doi=10.1038%2Fsrep39171&volume=6&publication_year=2016&author=Al-Hilaly%2CYK) 
  1. Conway, K. A., Rochet, J. C., Bieganski, R. M. & Lansbury, P. T. Jr. Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct. Science 294, 1346–1349 (2001).
[Article](https://doi.org/10.1126%2Fscience.1063522)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXotlKmurk%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701929)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Kinetic%20stabilization%20of%20the%20alpha-synuclein%20protofibril%20by%20a%20dopamine-alpha-synuclein%20adduct&journal=Science&doi=10.1126%2Fscience.1063522&volume=294&pages=1346-1349&publication_year=2001&author=Conway%2CKA&author=Rochet%2CJC&author=Bieganski%2CRM&author=Lansbury%2CPT) 
  1. Nemes, Z. et al. Transglutaminase-mediated intramolecular cross-linking of membrane-bound alpha-synuclein promotes amyloid formation in Lewy bodies. J. Biol. Chem. 284, 27252–27264 (2009).
[Article](https://doi.org/10.1074%2Fjbc.M109.033969)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhtFyjsrbK)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19651786)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785653)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Transglutaminase-mediated%20intramolecular%20cross-linking%20of%20membrane-bound%20alpha-synuclein%20promotes%20amyloid%20formation%20in%20Lewy%20bodies&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M109.033969&volume=284&pages=27252-27264&publication_year=2009&author=Nemes%2CZ) 
  1. Pivato, M. et al. Covalent alpha-synuclein dimers: chemico-physical and aggregation properties. PLoS One 7, e50027 (2012).
[Article](https://doi.org/10.1371%2Fjournal.pone.0050027)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtVOi)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23272053)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3521728)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Covalent%20alpha-synuclein%20dimers%3A%20chemico-physical%20and%20aggregation%20properties&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0050027&volume=7&publication_year=2012&author=Pivato%2CM) 
  1. Estevez, M. Oxidative damage to poultry: from farm to fork. Poult. Sci. 94, 1368–1378 (2015).
[Article](https://doi.org/10.3382%2Fps%2Fpev094)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhvFektrbJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25825786)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oxidative%20damage%20to%20poultry%3A%20from%20farm%20to%20fork&journal=Poult.%20Sci.&doi=10.3382%2Fps%2Fpev094&volume=94&pages=1368-1378&publication_year=2015&author=Estevez%2CM) 
  1. Rak, K. & Rader, D. J. Cardiovascular disease: the diet-microbe morbid union. Nature 472, 40–41 (2011).
[Article](https://doi.org/10.1038%2F472040a)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXksVCrur0%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21475185)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cardiovascular%20disease%3A%20the%20diet-microbe%20morbid%20union&journal=Nature&doi=10.1038%2F472040a&volume=472&pages=40-41&publication_year=2011&author=Rak%2CK&author=Rader%2CDJ) 
  1. Lund, M. N., Heinonen, M., Baron, C. P. & Estevez, M. Protein oxidation in muscle foods: a review. Mol. Nutr. Food Res. 55, 83–95 (2011).
[Article](https://doi.org/10.1002%2Fmnfr.201000453)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXpvVSk)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21207515)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Protein%20oxidation%20in%20muscle%20foods%3A%20a%20review&journal=Mol.%20Nutr.%20Food%20Res.&doi=10.1002%2Fmnfr.201000453&volume=55&pages=83-95&publication_year=2011&author=Lund%2CMN&author=Heinonen%2CM&author=Baron%2CCP&author=Estevez%2CM) 
  1. Estevez, M. Protein carbonyls in meat systems: a review. Meat Sci. 89, 259–279 (2011).
[Article](https://doi.org/10.1016%2Fj.meatsci.2011.04.025)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXptlagtb4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21621336)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Protein%20carbonyls%20in%20meat%20systems%3A%20a%20review&journal=Meat%20Sci.&doi=10.1016%2Fj.meatsci.2011.04.025&volume=89&pages=259-279&publication_year=2011&author=Estevez%2CM) 
  1. Sottero, B., Rossin, D., Poli, G. & Biasi, F. Lipid oxidation products in the pathogenesis of inflammation-related gut diseases. Curr. Med. Chem. 24, Epub ahead of print (2017).
  1. Ames, B. N., Shigenaga, M. K. & Hagen, T. M. Oxidants, antioxidants, and the degenerative diseases of aging. Proc. Natl. Acad. Sci. USA 90, 7915–7922 (1993).
[Article](https://doi.org/10.1073%2Fpnas.90.17.7915)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK3sXmtVSksL4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8367443)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC47258)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oxidants%2C%20antioxidants%2C%20and%20the%20degenerative%20diseases%20of%20aging&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.90.17.7915&volume=90&pages=7915-7922&publication_year=1993&author=Ames%2CBN&author=Shigenaga%2CMK&author=Hagen%2CTM) 
  1. Traore, S. et al. Effect of heat treatment on protein oxidation in pig meat. Meat Sci. 91, 14–21 (2012).
[Article](https://doi.org/10.1016%2Fj.meatsci.2011.11.037)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhvFaltrc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22209093)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effect%20of%20heat%20treatment%20on%20protein%20oxidation%20in%20pig%20meat&journal=Meat%20Sci.&doi=10.1016%2Fj.meatsci.2011.11.037&volume=91&pages=14-21&publication_year=2012&author=Traore%2CS) 
  1. Decker, E. A. & Crum, A. D. Antioxidant activity of carnosine in cooked ground pork. Meat Sci. 34, 245–253 (1993).
[Article](https://doi.org/10.1016%2F0309-1740%2893%2990031-C)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK3sXksVOqsLY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22060667)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Antioxidant%20activity%20of%20carnosine%20in%20cooked%20ground%20pork&journal=Meat%20Sci.&doi=10.1016%2F0309-1740%2893%2990031-C&volume=34&pages=245-253&publication_year=1993&author=Decker%2CEA&author=Crum%2CAD) 
  1. Liu, G. & Xiong, Y. L. Electrophoretic pattern, thermal denaturation, and in vitro digestibility of oxidized myosin. J. Agric. Food Chem. 48, 624–630 (2000).
[Article](https://doi.org/10.1021%2Fjf990520h)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXhtlOrtbo%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10725125)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Electrophoretic%20pattern%2C%20thermal%20denaturation%2C%20and%20in%20vitro%20digestibility%20of%20oxidized%20myosin&journal=J.%20Agric.%20Food%20Chem.&doi=10.1021%2Fjf990520h&volume=48&pages=624-630&publication_year=2000&author=Liu%2CG&author=Xiong%2CYL) 
  1. Spinelli, K. J. et al. Presynaptic alpha-synuclein aggregation in a mouse model of Parkinson’s disease. J. Neurosci. 34, 2037–2050 (2014).
[Article](https://doi.org/10.1523%2FJNEUROSCI.2581-13.2014)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXisVGrsLk%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24501346)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3913861)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Presynaptic%20alpha-synuclein%20aggregation%20in%20a%20mouse%20model%20of%20Parkinson%E2%80%99s%20disease&journal=J.%20Neurosci.&doi=10.1523%2FJNEUROSCI.2581-13.2014&volume=34&pages=2037-2050&publication_year=2014&author=Spinelli%2CKJ) 
  1. Prusiner, S. B., Cochran, S. P., Downey, D. E. & Groth, D. F. Determination of scrapie agent titer from incubation period measurements in hamsters. Adv. Exp. Med. Biol. 134, 385–399 (1981).
[Article](https://link.springer.com/doi/10.1007/978-1-4757-0495-2_35)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaL3M7otVOjtQ%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7194570)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Determination%20of%20scrapie%20agent%20titer%20from%20incubation%20period%20measurements%20in%20hamsters&journal=Adv.%20Exp.%20Med.%20Biol.&doi=10.1007%2F978-1-4757-0495-2_35&volume=134&pages=385-399&publication_year=1981&author=Prusiner%2CSB&author=Cochran%2CSP&author=Downey%2CDE&author=Groth%2CDF) 
  1. Pattison, I. H. The relative susceptibility of sheep, goats and mice to two types of the goat scrapie agent. Res. Vet. Sci. 7, 207–212 (1966).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaF2s%2Fot1Oiug%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4163198)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20relative%20susceptibility%20of%20sheep%2C%20goats%20and%20mice%20to%20two%20types%20of%20the%20goat%20scrapie%20agent&journal=Res.%20Vet.%20Sci.&volume=7&pages=207-212&publication_year=1966&author=Pattison%2CIH) 
  1. Collinge, J. & Clarke, A. R. A general model of prion strains and their pathogenicity. Science 318, 930–936 (2007).
[Article](https://doi.org/10.1126%2Fscience.1138718)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXht1KhsLrF)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17991853)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20general%20model%20of%20prion%20strains%20and%20their%20pathogenicity&journal=Science&doi=10.1126%2Fscience.1138718&volume=318&pages=930-936&publication_year=2007&author=Collinge%2CJ&author=Clarke%2CAR) 
  1. Prusiner, S. B. et al. Transgenetic studies implicate interactions between homologous PrP isoforms in scrapie prion replication. Cell 63, 673–686 (1990).
[Article](https://doi.org/10.1016%2F0092-8674%2890%2990134-Z)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK3MXhvVWnsQ%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1977523)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Transgenetic%20studies%20implicate%20interactions%20between%20homologous%20PrP%20isoforms%20in%20scrapie%20prion%20replication&journal=Cell&doi=10.1016%2F0092-8674%2890%2990134-Z&volume=63&pages=673-686&publication_year=1990&author=Prusiner%2CSB) 
  1. Bartz, J. C., McKenzie, D. I., Bessen, R. A., Marsh, R. F. & Aiken, J. M. Transmissible mink encephalopathy species barrier effect between ferret and mink: PrP gene and protein analysis. J. Gen. Virol. 75(Pt 11), 2947–2953 (1994).
[Article](https://doi.org/10.1099%2F0022-1317-75-11-2947)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2MXhvFKju74%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7964604)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Transmissible%20mink%20encephalopathy%20species%20barrier%20effect%20between%20ferret%20and%20mink%3A%20PrP%20gene%20and%20protein%20analysis&journal=J.%20Gen.%20Virol.&doi=10.1099%2F0022-1317-75-11-2947&volume=75&issue=Pt%2011&pages=2947-2953&publication_year=1994&author=Bartz%2CJC&author=McKenzie%2CDI&author=Bessen%2CRA&author=Marsh%2CRF&author=Aiken%2CJM) 
  1. Choi, S. H. et al. Comparative genomic organization of the human and bovine PRNP locus. Genomics 87, 598–607 (2006).
[Article](https://doi.org/10.1016%2Fj.ygeno.2005.12.012)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XktVWlu7s%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16460908)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Comparative%20genomic%20organization%20of%20the%20human%20and%20bovine%20PRNP%20locus&journal=Genomics&doi=10.1016%2Fj.ygeno.2005.12.012&volume=87&pages=598-607&publication_year=2006&author=Choi%2CSH) 
  1. Hill, A. F. et al. The same prion strain causes vCJD and BSE. Nature 389, 448–450 (1997). 526.
[Article](https://doi.org/10.1038%2F38925)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2sXmsFWmsbg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9333232)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20same%20prion%20strain%20causes%20vCJD%20and%20BSE&journal=Nature&doi=10.1038%2F38925&volume=389&pages=448-450&publication_year=1997&author=Hill%2CAF) 
  1. Bruce, M. E. et al. Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 389, 498–501 (1997).
[Article](https://doi.org/10.1038%2F39057)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2sXmsFWqtb4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9333239)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Transmissions%20to%20mice%20indicate%20that%20%E2%80%98new%20variant%E2%80%99%20CJD%20is%20caused%20by%20the%20BSE%20agent&journal=Nature&doi=10.1038%2F39057&volume=389&pages=498-501&publication_year=1997&author=Bruce%2CME) 
  1. Krebs, M. R., Morozova-Roche, L. A., Daniel, K., Robinson, C. V. & Dobson, C. M. Observation of sequence specificity in the seeding of protein amyloid fibrils. Protein Sci. 13, 1933–1938 (2004).
[Article](https://doi.org/10.1110%2Fps.04707004)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXlsFWkur4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15215533)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2279934)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Observation%20of%20sequence%20specificity%20in%20the%20seeding%20of%20protein%20amyloid%20fibrils&journal=Protein%20Sci.&doi=10.1110%2Fps.04707004&volume=13&pages=1933-1938&publication_year=2004&author=Krebs%2CMR&author=Morozova-Roche%2CLA&author=Daniel%2CK&author=Robinson%2CCV&author=Dobson%2CCM) 
  1. Fares, M. B. et al. Induction of de novo alpha-synuclein fibrillization in a neuronal model for Parkinson’s disease. Proc. Natl. Acad. Sci. USA 113, E912–E921 (2016).
[Article](https://doi.org/10.1073%2Fpnas.1512876113)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xhsl2rsb4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26839406)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4763739)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Induction%20of%20de%20novo%20alpha-synuclein%20fibrillization%20in%20a%20neuronal%20model%20for%20Parkinson%E2%80%99s%20disease&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1512876113&volume=113&pages=E912-E921&publication_year=2016&author=Fares%2CMB) 
  1. Dawson, T. M., Ko, H. S. & Dawson, V. L. Genetic animal models of Parkinson’s disease. Neuron 66, 646–661 (2010).
[Article](https://doi.org/10.1016%2Fj.neuron.2010.04.034)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXnvFaksb4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20547124)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2917798)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Genetic%20animal%20models%20of%20Parkinson%E2%80%99s%20disease&journal=Neuron&doi=10.1016%2Fj.neuron.2010.04.034&volume=66&pages=646-661&publication_year=2010&author=Dawson%2CTM&author=Ko%2CHS&author=Dawson%2CVL) 
  1. Kang, W. et al. Salivary total alpha-synuclein, oligomeric alpha-synuclein and SNCA variants in Parkinson’s disease patients. Sci. Rep. 6, 28143 (2016).
[Article](https://doi.org/10.1038%2Fsrep28143)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27335051)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917865)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Salivary%20total%20alpha-synuclein%2C%20oligomeric%20alpha-synuclein%20and%20SNCA%20variants%20in%20Parkinson%E2%80%99s%20disease%20patients&journal=Sci.%20Rep.&doi=10.1038%2Fsrep28143&volume=6&publication_year=2016&author=Kang%2CW) 
  1. Watanabe, S., Ohnishi, M., Imai, K., Kawano, E. & Igarashi, S. Estimation of the total saliva volume produced per day in five-year-old children. Arch. Oral Biol. 40, 781–782 (1995).
[Article](https://doi.org/10.1016%2F0003-9969%2895%2900026-L)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK28%2FjslSitg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7487581)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Estimation%20of%20the%20total%20saliva%20volume%20produced%20per%20day%20in%20five-year-old%20children&journal=Arch.%20Oral%20Biol.&doi=10.1016%2F0003-9969%2895%2900026-L&volume=40&pages=781-782&publication_year=1995&author=Watanabe%2CS&author=Ohnishi%2CM&author=Imai%2CK&author=Kawano%2CE&author=Igarashi%2CS) 
  1. Collinge, J. et al. A clinical study of kuru patients with long incubation periods at the end of the epidemic in Papua New Guinea. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3725–3739 (2008).
[Article](https://doi.org/10.1098%2Frstb.2008.0068)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18849289)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2581654)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20clinical%20study%20of%20kuru%20patients%20with%20long%20incubation%20periods%20at%20the%20end%20of%20the%20epidemic%20in%20Papua%20New%20Guinea&journal=Philos.%20Trans.%20R.%20Soc.%20Lond.%20B%20Biol.%20Sci.&doi=10.1098%2Frstb.2008.0068&volume=363&pages=3725-3739&publication_year=2008&author=Collinge%2CJ) 
  1. Kim, H. L. et al. Dura mater graft-associated Creutzfeldt-Jakob disease: the first case in Korea. J. Korean Med. Sci. 26, 1515–1517 (2011).
[Article](https://doi.org/10.3346%2Fjkms.2011.26.11.1515)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22065911)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3207058)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dura%20mater%20graft-associated%20Creutzfeldt-Jakob%20disease%3A%20the%20first%20case%20in%20Korea&journal=J.%20Korean%20Med.%20Sci.&doi=10.3346%2Fjkms.2011.26.11.1515&volume=26&pages=1515-1517&publication_year=2011&author=Kim%2CHL) 
  1. Shijo, M. et al. Dura mater graft-associated Creutzfeldt-Jakob disease with 30-year incubation period. Neuropathology 37, 275–281 (2017).
[Article](https://doi.org/10.1111%2Fneup.12359)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27925304)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dura%20mater%20graft-associated%20Creutzfeldt-Jakob%20disease%20with%2030-year%20incubation%20period&journal=Neuropathology&doi=10.1111%2Fneup.12359&volume=37&pages=275-281&publication_year=2017&author=Shijo%2CM) 
  1. Behari, M., Srivastava, A. K., Das, R. R. & Pandey, R. M. Risk factors of Parkinson’s disease in Indian patients. J. Neurol. Sci. 190, 49–55 (2001).
[Article](https://doi.org/10.1016%2FS0022-510X%2801%2900578-0)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD3MrivVCquw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11574106)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Risk%20factors%20of%20Parkinson%E2%80%99s%20disease%20in%20Indian%20patients&journal=J.%20Neurol.%20Sci.&doi=10.1016%2FS0022-510X%2801%2900578-0&volume=190&pages=49-55&publication_year=2001&author=Behari%2CM&author=Srivastava%2CAK&author=Das%2CRR&author=Pandey%2CRM) 
  1. Louis, E. D., Michalec, M., Jiang, W., Factor-Litvak, P. & Zheng, W. Elevated blood harmane (1-methyl-9H-pyrido[3,4-b]indole) concentrations in Parkinson’s disease. Neurotoxicology 40, 52–56 (2014).
[Article](https://doi.org/10.1016%2Fj.neuro.2013.11.005)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhsFCntLs%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24300779)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Elevated%20blood%20harmane%20%281-methyl-9H-pyrido%5B3%2C4-b%5Dindole%29%20concentrations%20in%20Parkinson%E2%80%99s%20disease&journal=Neurotoxicology&doi=10.1016%2Fj.neuro.2013.11.005&volume=40&pages=52-56&publication_year=2014&author=Louis%2CED&author=Michalec%2CM&author=Jiang%2CW&author=Factor-Litvak%2CP&author=Zheng%2CW) 
  1. Anderson, C. et al. Dietary factors in Parkinson’s disease: the role of food groups and specific foods. Mov. Disord. 14, 21–27 (1999).
[Article](https://doi.org/10.1002%2F1531-8257%28199901%2914%3A1%3C21%3A%3AAID-MDS1006%3E3.0.CO%3B2-Y)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK1M7hsVyquw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9918340)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dietary%20factors%20in%20Parkinson%E2%80%99s%20disease%3A%20the%20role%20of%20food%20groups%20and%20specific%20foods&journal=Mov.%20Disord.&doi=10.1002%2F1531-8257%28199901%2914%3A1%3C21%3A%3AAID-MDS1006%3E3.0.CO%3B2-Y&volume=14&pages=21-27&publication_year=1999&author=Anderson%2CC) 
  1. Logroscino, G. et al. Dietary lipids and antioxidants in Parkinson’s disease: a population-based, case-control study. Ann. Neurol. 39, 89–94 (1996).
[Article](https://doi.org/10.1002%2Fana.410390113)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK287mtVKgtg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8572672)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dietary%20lipids%20and%20antioxidants%20in%20Parkinson%E2%80%99s%20disease%3A%20a%20population-based%2C%20case-control%20study&journal=Ann.%20Neurol.&doi=10.1002%2Fana.410390113&volume=39&pages=89-94&publication_year=1996&author=Logroscino%2CG) 
  1. Logroscino, G. et al. Dietary iron, animal fats, and risk of Parkinson’s disease. Mov. Disord. 13 Suppl 1, 13–16 (1998).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK1c3ntlOluw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9613713)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dietary%20iron%2C%20animal%20fats%2C%20and%20risk%20of%20Parkinson%E2%80%99s%20disease&journal=Mov.%20Disord.&volume=13%20Suppl%201&pages=13-16&publication_year=1998&author=Logroscino%2CG) 
  1. Gaenslen, A., Gasser, T. & Berg, D. Nutrition and the risk for Parkinson’s disease: review of the literature. J. Neural. Transm. (Vienna) 115, 703–713 (2008).
[Article](https://link.springer.com/doi/10.1007/s00702-007-0005-4)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXmslyhuro%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nutrition%20and%20the%20risk%20for%20Parkinson%E2%80%99s%20disease%3A%20review%20of%20the%20literature&journal=J.%20Neural.%20Transm.%20%28Vienna%29&doi=10.1007%2Fs00702-007-0005-4&volume=115&pages=703-713&publication_year=2008&author=Gaenslen%2CA&author=Gasser%2CT&author=Berg%2CD) 
  1. Chen, H. et al. Consumption of dairy products and risk of Parkinson’s disease. Am. J. Epidemiol. 165, 998–1006 (2007).
[Article](https://doi.org/10.1093%2Faje%2Fkwk089)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17272289)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2232901)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Consumption%20of%20dairy%20products%20and%20risk%20of%20Parkinson%E2%80%99s%20disease&journal=Am.%20J.%20Epidemiol.&doi=10.1093%2Faje%2Fkwk089&volume=165&pages=998-1006&publication_year=2007&author=Chen%2CH) 
  1. Abbott, R. D. et al. Midlife milk consumption and substantia nigra neuron density at death. Neurology 86, 512–519 (2016).
[Article](https://doi.org/10.1212%2FWNL.0000000000002254)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XisFGmsr0%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26658906)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4753730)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Midlife%20milk%20consumption%20and%20substantia%20nigra%20neuron%20density%20at%20death&journal=Neurology&doi=10.1212%2FWNL.0000000000002254&volume=86&pages=512-519&publication_year=2016&author=Abbott%2CRD) 
  1. Kyrozis, A. et al. Dietary and lifestyle variables in relation to incidence of Parkinson’s disease in Greece. Eur. J. Epidemiol. 28, 67–77 (2013).
[Article](https://link.springer.com/doi/10.1007/s10654-012-9760-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23377703)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dietary%20and%20lifestyle%20variables%20in%20relation%20to%20incidence%20of%20Parkinson%E2%80%99s%20disease%20in%20Greece&journal=Eur.%20J.%20Epidemiol.&doi=10.1007%2Fs10654-012-9760-0&volume=28&pages=67-77&publication_year=2013&author=Kyrozis%2CA) 
  1. Jiang, W., Ju, C., Jiang, H. & Zhang, D. Dairy foods intake and risk of Parkinson’s disease: a dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 29, 613–619 (2014).
[Article](https://link.springer.com/doi/10.1007/s10654-014-9921-4)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXpsFemur8%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24894826)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dairy%20foods%20intake%20and%20risk%20of%20Parkinson%E2%80%99s%20disease%3A%20a%20dose-response%20meta-analysis%20of%20prospective%20cohort%20studies&journal=Eur.%20J.%20Epidemiol.&doi=10.1007%2Fs10654-014-9921-4&volume=29&pages=613-619&publication_year=2014&author=Jiang%2CW&author=Ju%2CC&author=Jiang%2CH&author=Zhang%2CD) 
  1. Miyake, Y. et al. Lack of association of dairy food, calcium, and vitamin D intake with the risk of Parkinson’s disease: a case-control study in Japan. Parkinsonism Relat. Disord. 17, 112–116 (2011).
[Article](https://doi.org/10.1016%2Fj.parkreldis.2010.11.018)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BC3M3ks1agsw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21169048)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lack%20of%20association%20of%20dairy%20food%2C%20calcium%2C%20and%20vitamin%20D%20intake%20with%20the%20risk%20of%20Parkinson%E2%80%99s%20disease%3A%20a%20case-control%20study%20in%20Japan&journal=Parkinsonism%20Relat.%20Disord.&doi=10.1016%2Fj.parkreldis.2010.11.018&volume=17&pages=112-116&publication_year=2011&author=Miyake%2CY) 
  1. Muangpaisan, W., Hori, H. & Brayne, C. Systematic review of the prevalence and incidence of Parkinson’s disease in Asia. J. Epidemiol. 19, 281–293 (2009).
[Article](https://doi.org/10.2188%2Fjea.JE20081034)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19801887)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924097)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Systematic%20review%20of%20the%20prevalence%20and%20incidence%20of%20Parkinson%E2%80%99s%20disease%20in%20Asia&journal=J.%20Epidemiol.&doi=10.2188%2Fjea.JE20081034&volume=19&pages=281-293&publication_year=2009&author=Muangpaisan%2CW&author=Hori%2CH&author=Brayne%2CC) 
  1. Wright Willis, A., Evanoff, B. A., Lian, M., Criswell, S. R. & Racette, B. A. Geographic and ethnic variation in Parkinson disease: a population-based study of US Medicare beneficiaries. Neuroepidemiology 34, 143–151 (2010).
[Article](https://doi.org/10.1159%2F000275491)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20090375)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2865395)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Geographic%20and%20ethnic%20variation%20in%20Parkinson%20disease%3A%20a%20population-based%20study%20of%20US%20Medicare%20beneficiaries&journal=Neuroepidemiology&doi=10.1159%2F000275491&volume=34&pages=143-151&publication_year=2010&author=Wright%20Willis%2CA&author=Evanoff%2CBA&author=Lian%2CM&author=Criswell%2CSR&author=Racette%2CBA) 
  1. Mehndiratta, M. M. et al. Creutzfeldt-Jakob disease: report of 10 cases from North India. Neurol. India 49, 338–341 (2001).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD38%2Fnt1Omug%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11799404)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Creutzfeldt-Jakob%20disease%3A%20report%20of%2010%20cases%20from%20North%20India&journal=Neurol.%20India&volume=49&pages=338-341&publication_year=2001&author=Mehndiratta%2CMM) 
  1. Kojima, G. et al. Creutzfeldt-Jakob disease: a case report and differential diagnoses. Hawaii J. Med. Public Health 72, 136–139 (2013).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23795314)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3689509)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Creutzfeldt-Jakob%20disease%3A%20a%20case%20report%20and%20differential%20diagnoses&journal=Hawaii%20J.%20Med.%20Public%20Health&volume=72&pages=136-139&publication_year=2013&author=Kojima%2CG) 
  1. Chartier-Harlin, M. C. et al. Alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364, 1167–1169 (2004).
[Article](https://doi.org/10.1016%2FS0140-6736%2804%2917103-1)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXnvVOiu7Y%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15451224)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alpha-synuclein%20locus%20duplication%20as%20a%20cause%20of%20familial%20Parkinson%E2%80%99s%20disease&journal=Lancet&doi=10.1016%2FS0140-6736%2804%2917103-1&volume=364&pages=1167-1169&publication_year=2004&author=Chartier-Harlin%2CMC) 
  1. Singleton, A. B. et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302, 841 (2003).
[Article](https://doi.org/10.1126%2Fscience.1090278)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXoslehsbc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14593171)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=alpha-Synuclein%20locus%20triplication%20causes%20Parkinson%E2%80%99s%20disease&journal=Science&doi=10.1126%2Fscience.1090278&volume=302&publication_year=2003&author=Singleton%2CAB) 
  1. Klein, C. & Westenberger, A. Genetics of Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a008888 (2012).
[Article](https://doi.org/10.1101%2Fcshperspect.a008888)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22315721)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253033)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Genetics%20of%20Parkinson%E2%80%99s%20disease&journal=Cold%20Spring%20Harb.%20Perspect.%20Med.&doi=10.1101%2Fcshperspect.a008888&volume=2&publication_year=2012&author=Klein%2CC&author=Westenberger%2CA) 
  1. Chang, D. et al. A meta-analysis of genome-wide association studies identifies 17 new Parkinson’s disease risk loci. _Nat. Genet. _ 49, 1511–1516 (2017).
  1. Nalls, M. A. et al. Diagnosis of Parkinson’s disease on the basis of clinical and genetic classification: a population-based modelling study. Lancet Neurol. 14, 1002–1009 (2015).
[Article](https://doi.org/10.1016%2FS1474-4422%2815%2900178-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26271532)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4575273)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Diagnosis%20of%20Parkinson%E2%80%99s%20disease%20on%20the%20basis%20of%20clinical%20and%20genetic%20classification%3A%20a%20population-based%20modelling%20study&journal=Lancet%20Neurol.&doi=10.1016%2FS1474-4422%2815%2900178-7&volume=14&pages=1002-1009&publication_year=2015&author=Nalls%2CMA) 
  1. Dehay, B. et al. Lysosomal impairment in Parkinson’s disease. Mov. Disord. 28, 725–732 (2013).
[Article](https://doi.org/10.1002%2Fmds.25462)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXht1amu7vK)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23580333)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5131721)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lysosomal%20impairment%20in%20Parkinson%E2%80%99s%20disease&journal=Mov.%20Disord.&doi=10.1002%2Fmds.25462&volume=28&pages=725-732&publication_year=2013&author=Dehay%2CB) 
  1. Abeliovich, A. & Gitler, A. D. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature 539, 207–216 (2016).
[Article](https://doi.org/10.1038%2Fnature20414)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27830778)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Defects%20in%20trafficking%20bridge%20Parkinson%E2%80%99s%20disease%20pathology%20and%20genetics&journal=Nature&doi=10.1038%2Fnature20414&volume=539&pages=207-216&publication_year=2016&author=Abeliovich%2CA&author=Gitler%2CAD) 
  1. Lee, H. J., Khoshaghideh, F., Patel, S. & Lee, S. J. Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway. J. Neurosci. 24, 1888–1896 (2004).
[Article](https://doi.org/10.1523%2FJNEUROSCI.3809-03.2004)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXitVWktrc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14985429)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Clearance%20of%20alpha-synuclein%20oligomeric%20intermediates%20via%20the%20lysosomal%20degradation%20pathway&journal=J.%20Neurosci.&doi=10.1523%2FJNEUROSCI.3809-03.2004&volume=24&pages=1888-1896&publication_year=2004&author=Lee%2CHJ&author=Khoshaghideh%2CF&author=Patel%2CS&author=Lee%2CSJ) 
  1. Cortes, C. J., Qin, K., Cook, J., Solanki, A. & Mastrianni, J. A. Rapamycin delays disease onset and prevents PrP plaque deposition in a mouse model of Gerstmann-Straussler-Scheinker disease. J. Neurosci. 32, 12396–12405 (2012).
[Article](https://doi.org/10.1523%2FJNEUROSCI.6189-11.2012)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhtlGrsLzE)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22956830)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752082)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Rapamycin%20delays%20disease%20onset%20and%20prevents%20PrP%20plaque%20deposition%20in%20a%20mouse%20model%20of%20Gerstmann-Straussler-Scheinker%20disease&journal=J.%20Neurosci.&doi=10.1523%2FJNEUROSCI.6189-11.2012&volume=32&pages=12396-12405&publication_year=2012&author=Cortes%2CCJ&author=Qin%2CK&author=Cook%2CJ&author=Solanki%2CA&author=Mastrianni%2CJA) 
  1. Jeong, J. K. et al. Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci. Res. 73, 99–105 (2012).
[Article](https://doi.org/10.1016%2Fj.neures.2012.03.005)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xmt1Ghtro%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22465415)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Autophagy%20induced%20by%20resveratrol%20prevents%20human%20prion%20protein-mediated%20neurotoxicity&journal=Neurosci.%20Res.&doi=10.1016%2Fj.neures.2012.03.005&volume=73&pages=99-105&publication_year=2012&author=Jeong%2CJK) 
  1. Burgner, D., Jamieson, S. E. & Blackwell, J. M. Genetic susceptibility to infectious diseases: big is beautiful, but will bigger be even better? Lancet. Infect. Dis. 6, 653–663 (2006).
[Article](https://doi.org/10.1016%2FS1473-3099%2806%2970601-6)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XhtFChsb3M)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17008174)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2330096)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Genetic%20susceptibility%20to%20infectious%20diseases%3A%20big%20is%20beautiful%2C%20but%20will%20bigger%20be%20even%20better%3F&journal=Lancet.%20Infect.%20Dis.&doi=10.1016%2FS1473-3099%2806%2970601-6&volume=6&pages=653-663&publication_year=2006&author=Burgner%2CD&author=Jamieson%2CSE&author=Blackwell%2CJM) 
  1. Ramos, P. S., Shedlock, A. M. & Langefeld, C. D. Genetics of autoimmune diseases: insights from population genetics. J. Hum. Genet. 60, 657–664 (2015).
[Article](https://doi.org/10.1038%2Fjhg.2015.94)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvFGntLrP)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26223182)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4660050)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Genetics%20of%20autoimmune%20diseases%3A%20insights%20from%20population%20genetics&journal=J.%20Hum.%20Genet.&doi=10.1038%2Fjhg.2015.94&volume=60&pages=657-664&publication_year=2015&author=Ramos%2CPS&author=Shedlock%2CAM&author=Langefeld%2CCD) 
  1. Mosley, R. L., Hutter-Saunders, J. A., Stone, D. K. & Gendelman, H. E. Inflammation and adaptive immunity in Parkinson’s disease. Cold Spring Harb. Perspect. Med. 2, a009381 (2012).
[Article](https://doi.org/10.1101%2Fcshperspect.a009381)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22315722)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3253034)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inflammation%20and%20adaptive%20immunity%20in%20Parkinson%E2%80%99s%20disease&journal=Cold%20Spring%20Harb.%20Perspect.%20Med.&doi=10.1101%2Fcshperspect.a009381&volume=2&publication_year=2012&author=Mosley%2CRL&author=Hutter-Saunders%2CJA&author=Stone%2CDK&author=Gendelman%2CHE) 
  1. Fiszer, U. et al. Gamma delta + T cells are increased in patients with Parkinson’s disease. J. Neurol. Sci. 121, 39–45 (1994).
[Article](https://doi.org/10.1016%2F0022-510X%2894%2990154-6)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK2c7otVWnsQ%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8133310)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Gamma%20delta%E2%80%89%2B%E2%80%89T%20cells%20are%20increased%20in%20patients%20with%20Parkinson%E2%80%99s%20disease&journal=J.%20Neurol.%20Sci.&doi=10.1016%2F0022-510X%2894%2990154-6&volume=121&pages=39-45&publication_year=1994&author=Fiszer%2CU) 
  1. Benner, E. J. et al. Nitrated alpha-synuclein immunity accelerates degeneration of nigral dopaminergic neurons. PLoS One 3, e1376 (2008).
[Article](https://doi.org/10.1371%2Fjournal.pone.0001376)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18167537)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2147051)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXhtVSnu74%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nitrated%20alpha-synuclein%20immunity%20accelerates%20degeneration%20of%20nigral%20dopaminergic%20neurons&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0001376&volume=3&publication_year=2008&author=Benner%2CEJ) 
  1. Ferrari, C. C. & Tarelli, R. Parkinson’s disease and systemic inflammation. Parkinsons Dis. 2011, 436813 (2011).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21403862)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3049348)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Parkinson%E2%80%99s%20disease%20and%20systemic%20inflammation&journal=Parkinsons%20Dis.&volume=2011&publication_year=2011&author=Ferrari%2CCC&author=Tarelli%2CR) 
  1. Ouchi, Y., Yagi, S., Yokokura, M. & Sakamoto, M. Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism. Relat. Disord. 15, S200–S204 (2009).
[Article](https://doi.org/10.1016%2FS1353-8020%2809%2970814-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20082990)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Neuroinflammation%20in%20the%20living%20brain%20of%20Parkinson%E2%80%99s%20disease&journal=Parkinsonism.%20Relat.%20Disord.&doi=10.1016%2FS1353-8020%2809%2970814-4&volume=15%20Suppl%203&pages=S200-S204&publication_year=2009&author=Ouchi%2CY&author=Yagi%2CS&author=Yokokura%2CM&author=Sakamoto%2CM) 
  1. Perry, V. H., Newman, T. A. & Cunningham, C. The impact of systemic infection on the progression of neurodegenerative disease. Nat. Rev. Neurosci. 4, 103–112 (2003).
[Article](https://doi.org/10.1038%2Fnrn1032)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXot12itQ%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12563281)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20impact%20of%20systemic%20infection%20on%20the%20progression%20of%20neurodegenerative%20disease&journal=Nat.%20Rev.%20Neurosci.&doi=10.1038%2Fnrn1032&volume=4&pages=103-112&publication_year=2003&author=Perry%2CVH&author=Newman%2CTA&author=Cunningham%2CC) 
  1. Gao, H. M. et al. Neuroinflammation and alpha-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ. Health Perspect. 119, 807–814 (2011).
[Article](https://doi.org/10.1289%2Fehp.1003013)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXos1Grsb0%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21245015)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3114815)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Neuroinflammation%20and%20alpha-synuclein%20dysfunction%20potentiate%20each%20other%2C%20driving%20chronic%20progression%20of%20neurodegeneration%20in%20a%20mouse%20model%20of%20Parkinson%E2%80%99s%20disease&journal=Environ.%20Health%20Perspect.&doi=10.1289%2Fehp.1003013&volume=119&pages=807-814&publication_year=2011&author=Gao%2CHM) 
  1. Edelblum, K. L. & Turner, J. R. The tight junction in inflammatory disease: communication breakdown. Curr. Opin. Pharmacol. 9, 715–720 (2009).
[Article](https://doi.org/10.1016%2Fj.coph.2009.06.022)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhsVGqs7rF)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19632896)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788114)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20tight%20junction%20in%20inflammatory%20disease%3A%20communication%20breakdown&journal=Curr.%20Opin.%20Pharmacol.&doi=10.1016%2Fj.coph.2009.06.022&volume=9&pages=715-720&publication_year=2009&author=Edelblum%2CKL&author=Turner%2CJR) 
  1. Bedarf, J. R. et al. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naive Parkinson’s disease patients. Genome Med. 9, 39 (2017).
[Article](https://link.springer.com/doi/10.1186/s13073-017-0428-y)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BC1crhvVeltg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28449715)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5408370)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Functional%20implications%20of%20microbial%20and%20viral%20gut%20metagenome%20changes%20in%20early%20stage%20L-DOPA-naive%20Parkinson%E2%80%99s%20disease%20patients&journal=Genome%20Med.&doi=10.1186%2Fs13073-017-0428-y&volume=9&publication_year=2017&author=Bedarf%2CJR) 
  1. Keshavarzian, A. et al. Colonic bacterial composition in Parkinson’s disease. Mov. Disord. 30, 1351–1360 (2015).
[Article](https://doi.org/10.1002%2Fmds.26307)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsVOqsbvL)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26179554)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Colonic%20bacterial%20composition%20in%20Parkinson%E2%80%99s%20disease&journal=Mov.%20Disord.&doi=10.1002%2Fmds.26307&volume=30&pages=1351-1360&publication_year=2015&author=Keshavarzian%2CA) 
  1. Tremlett, H., Bauer, K. C., Appel-Cresswell, S., Finlay, B. B. & Waubant, E. The gut microbiome in human neurological disease: A review. Ann. Neurol. 81, 369–382 (2017).
[Article](https://doi.org/10.1002%2Fana.24901)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28220542)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20gut%20microbiome%20in%20human%20neurological%20disease%3A%20A%20review&journal=Ann.%20Neurol.&doi=10.1002%2Fana.24901&volume=81&pages=369-382&publication_year=2017&author=Tremlett%2CH&author=Bauer%2CKC&author=Appel-Cresswell%2CS&author=Finlay%2CBB&author=Waubant%2CE) 
  1. Al-Asmakh, M. & Hedin, L. Microbiota and the control of blood-tissue barriers. Tissue Barriers 3, e1039691 (2015).
[Article](https://doi.org/10.1080%2F21688370.2015.1039691)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26451344)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4574894)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhtlajsLc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Microbiota%20and%20the%20control%20of%20blood-tissue%20barriers&journal=Tissue%20Barriers&doi=10.1080%2F21688370.2015.1039691&volume=3&publication_year=2015&author=Al-Asmakh%2CM&author=Hedin%2CL) 
  1. Lundmark, K., Westermark, G. T., Olsen, A. & Westermark, P. Protein fibrils in nature can enhance amyloid protein A amyloidosis in mice: Cross-seeding as a disease mechanism. Proc. Natl. Acad. Sci. USA 102, 6098–6102 (2005).
[Article](https://doi.org/10.1073%2Fpnas.0501814102)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXkt1Clsrk%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15829582)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1087940)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Protein%20fibrils%20in%20nature%20can%20enhance%20amyloid%20protein%20A%20amyloidosis%20in%20mice%3A%20Cross-seeding%20as%20a%20disease%20mechanism&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.0501814102&volume=102&pages=6098-6102&publication_year=2005&author=Lundmark%2CK&author=Westermark%2CGT&author=Olsen%2CA&author=Westermark%2CP) 
  1. D’Souza, A. L. Ageing and the gut. Postgrad. Med. J. 83, 44–53 (2007).
[Article](https://doi.org/10.1136%2Fpgmj.2006.049361)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17267678)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2599964)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ageing%20and%20the%20gut&journal=Postgrad.%20Med.%20J.&doi=10.1136%2Fpgmj.2006.049361&volume=83&pages=44-53&publication_year=2007&author=D%E2%80%99Souza%2CAL) 
  1. Man, A. L. et al. Age-associated modifications of intestinal permeability and innate immunity in human small intestine. Clin. Sci. (Lond). 129, 515–527 (2015).
[Article](https://doi.org/10.1042%2FCS20150046)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhslOqsLjF)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25948052)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Age-associated%20modifications%20of%20intestinal%20permeability%20and%20innate%20immunity%20in%20human%20small%20intestine&journal=Clin.%20Sci.%20%28Lond%29.&doi=10.1042%2FCS20150046&volume=129&pages=515-527&publication_year=2015&author=Man%2CAL) 
  1. Stoger, R., Scaife, P. J., Shephard, F. & Chakrabarti, L. Elevated 5hmC levels characterize DNA of the cerebellum in Parkinson’s disease. NPJ Parkinsons Dis. 3, 6 (2017).
[Article](https://doi.org/10.1038%2Fs41531-017-0007-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28649606)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5460211)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Elevated%205hmC%20levels%20characterize%20DNA%20of%20the%20cerebellum%20in%20Parkinson%E2%80%99s%20disease&journal=NPJ%20Parkinsons%20Dis.&doi=10.1038%2Fs41531-017-0007-3&volume=3&publication_year=2017&author=Stoger%2CR&author=Scaife%2CPJ&author=Shephard%2CF&author=Chakrabarti%2CL) 
  1. Sanchez-Mut, J. V. et al. Whole genome grey and white matter DNA methylation profiles in dorsolateral prefrontal cortex. Synapse 71, e21959 (2017).
  1. Schmitt, I. et al. L-dopa increases alpha-synuclein DNA methylation in Parkinson’s disease patients in vivo and in vitro. Mov. Disord. 30, 1794–1801 (2015).
[Article](https://doi.org/10.1002%2Fmds.26319)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhvVyitLnM)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26173746)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=L-dopa%20increases%20alpha-synuclein%20DNA%20methylation%20in%20Parkinson%E2%80%99s%20disease%20patients%20in%20vivo%20and%20in%20vitro&journal=Mov.%20Disord.&doi=10.1002%2Fmds.26319&volume=30&pages=1794-1801&publication_year=2015&author=Schmitt%2CI) 
  1. Jakubowski, J. L. & Labrie, V. Epigenetic biomarkers for Parkinson’s disease: from diagnostics to therapeutics. J. Parkinsons Dis. 7, 1–12 (2017).
[Article](https://doi.org/10.3233%2FJPD-160914)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27792016)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302044)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Epigenetic%20biomarkers%20for%20Parkinson%E2%80%99s%20disease%3A%20from%20diagnostics%20to%20therapeutics&journal=J.%20Parkinsons%20Dis.&doi=10.3233%2FJPD-160914&volume=7&pages=1-12&publication_year=2017&author=Jakubowski%2CJL&author=Labrie%2CV) 
  1. Jowaed, A., Schmitt, I., Kaut, O. & Wullner, U. Methylation regulates alpha-synuclein expression and is decreased in Parkinson’s disease patients’ brains. J. Neurosci. 30, 6355–6359 (2010).
[Article](https://doi.org/10.1523%2FJNEUROSCI.6119-09.2010)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXovVWmsbY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20445061)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Methylation%20regulates%20alpha-synuclein%20expression%20and%20is%20decreased%20in%20Parkinson%E2%80%99s%20disease%20patients%E2%80%99%20brains&journal=J.%20Neurosci.&doi=10.1523%2FJNEUROSCI.6119-09.2010&volume=30&pages=6355-6359&publication_year=2010&author=Jowaed%2CA&author=Schmitt%2CI&author=Kaut%2CO&author=Wullner%2CU) 
  1. Minones-Moyano, E. et al. MicroRNA profiling of Parkinson’s disease brains identifies early downregulation of miR-34b/c which modulate mitochondrial function. Hum. Mol. Genet. 20, 3067–3078 (2011).
[Article](https://doi.org/10.1093%2Fhmg%2Fddr210)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXos1Knuro%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21558425)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=MicroRNA%20profiling%20of%20Parkinson%E2%80%99s%20disease%20brains%20identifies%20early%20downregulation%20of%20miR-34b%2Fc%20which%20modulate%20mitochondrial%20function&journal=Hum.%20Mol.%20Genet.&doi=10.1093%2Fhmg%2Fddr210&volume=20&pages=3067-3078&publication_year=2011&author=Minones-Moyano%2CE) 
  1. Coppede, F. Genetics and epigenetics of Parkinson’s disease. ScientificWorldJournal. 2012, 489830 (2012).
[Article](https://doi.org/10.1100%2F2012%2F489830)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22623900)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3353471)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhtlyqurbI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Genetics%20and%20epigenetics%20of%20Parkinson%E2%80%99s%20disease&journal=ScientificWorldJournal.&doi=10.1100%2F2012%2F489830&volume=2012&publication_year=2012&author=Coppede%2CF) 
  1. Soldner, F. et al. Parkinson-associated risk variant in distal enhancer of alpha-synuclein modulates target gene expression. Nature 533, 95–99 (2016).
[Article](https://doi.org/10.1038%2Fnature17939)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XmsVehsrw%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27096366)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5042324)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Parkinson-associated%20risk%20variant%20in%20distal%20enhancer%20of%20alpha-synuclein%20modulates%20target%20gene%20expression&journal=Nature&doi=10.1038%2Fnature17939&volume=533&pages=95-99&publication_year=2016&author=Soldner%2CF) 
  1. Kitada, T. et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392, 605–608 (1998).
[Article](https://doi.org/10.1038%2F33416)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1cXis1Sqsrc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9560156)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mutations%20in%20the%20parkin%20gene%20cause%20autosomal%20recessive%20juvenile%20parkinsonism&journal=Nature&doi=10.1038%2F33416&volume=392&pages=605-608&publication_year=1998&author=Kitada%2CT) 
  1. Petronis, A. Epigenetics as a unifying principle in the aetiology of complex traits and diseases. Nature 465, 721–727 (2010).
[Article](https://doi.org/10.1038%2Fnature09230)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXntF2lsbg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20535201)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Epigenetics%20as%20a%20unifying%20principle%20in%20the%20aetiology%20of%20complex%20traits%20and%20diseases&journal=Nature&doi=10.1038%2Fnature09230&volume=465&pages=721-727&publication_year=2010&author=Petronis%2CA) 
  1. Horvath, S. & Ritz, B. R. Increased epigenetic age and granulocyte counts in the blood of Parkinson’s disease patients. Aging (Albany NY) 7, 1130–1142 (2015).
[Article](https://doi.org/10.18632%2Faging.100859)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Increased%20epigenetic%20age%20and%20granulocyte%20counts%20in%20the%20blood%20of%20Parkinson%E2%80%99s%20disease%20patients&journal=Aging%20%28Albany%20NY%29&doi=10.18632%2Faging.100859&volume=7&pages=1130-1142&publication_year=2015&author=Horvath%2CS&author=Ritz%2CBR) 
  1. Burchell, V. S. et al. The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat. Neurosci. 16, 1257–1265 (2013).
[Article](https://doi.org/10.1038%2Fnn.3489)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXht1CgsLjL)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23933751)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20Parkinson%E2%80%99s%20disease-linked%20proteins%20Fbxo7%20and%20Parkin%20interact%20to%20mediate%20mitophagy&journal=Nat.%20Neurosci.&doi=10.1038%2Fnn.3489&volume=16&pages=1257-1265&publication_year=2013&author=Burchell%2CVS) 
  1. Chiba-Falek, O., Lopez, G. J. & Nussbaum, R. L. Levels of alpha-synuclein mRNA in sporadic Parkinson disease patients. Mov. Disord. 21, 1703–1708 (2006).
[Article](https://doi.org/10.1002%2Fmds.21007)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16795004)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Levels%20of%20alpha-synuclein%20mRNA%20in%20sporadic%20Parkinson%20disease%20patients&journal=Mov.%20Disord.&doi=10.1002%2Fmds.21007&volume=21&pages=1703-1708&publication_year=2006&author=Chiba-Falek%2CO&author=Lopez%2CGJ&author=Nussbaum%2CRL) 
  1. Kingsbury, A. E. et al. Alteration in alpha-synuclein mRNA expression in Parkinson’s disease. Mov. Disord. 19, 162–170 (2004).
[Article](https://doi.org/10.1002%2Fmds.10683)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14978671)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alteration%20in%20alpha-synuclein%20mRNA%20expression%20in%20Parkinson%E2%80%99s%20disease&journal=Mov.%20Disord.&doi=10.1002%2Fmds.10683&volume=19&pages=162-170&publication_year=2004&author=Kingsbury%2CAE) 
  1. Pihlstrom, L., Berge, V., Rengmark, A. & Toft, M. Parkinson’s disease correlates with promoter methylation in the alpha-synuclein gene. Mov. Disord. 30, 577–580 (2015).
[Article](https://doi.org/10.1002%2Fmds.26073)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXlslKgsbk%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25545759)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Parkinson%E2%80%99s%20disease%20correlates%20with%20promoter%20methylation%20in%20the%20alpha-synuclein%20gene&journal=Mov.%20Disord.&doi=10.1002%2Fmds.26073&volume=30&pages=577-580&publication_year=2015&author=Pihlstrom%2CL&author=Berge%2CV&author=Rengmark%2CA&author=Toft%2CM) 
  1. Ai, S. X. et al. Hypomethylation of SNCA in blood of patients with sporadic Parkinson’s disease. J. Neurol. Sci. 337, 123–128 (2014).
[Article](https://doi.org/10.1016%2Fj.jns.2013.11.033)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXitVWjs7rK)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24326201)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hypomethylation%20of%20SNCA%20in%20blood%20of%20patients%20with%20sporadic%20Parkinson%E2%80%99s%20disease&journal=J.%20Neurol.%20Sci.&doi=10.1016%2Fj.jns.2013.11.033&volume=337&pages=123-128&publication_year=2014&author=Ai%2CSX) 
  1. Agirre, X. et al. Abnormal methylation of the common PARK2 and PACRG promoter is associated with downregulation of gene expression in acute lymphoblastic leukemia and chronic myeloid leukemia. Int. J. Cancer 118, 1945–1953 (2006).
[Article](https://doi.org/10.1002%2Fijc.21584)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28Xjt1Gqtbc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16287063)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Abnormal%20methylation%20of%20the%20common%20PARK2%20and%20PACRG%20promoter%20is%20associated%20with%20downregulation%20of%20gene%20expression%20in%20acute%20lymphoblastic%20leukemia%20and%20chronic%20myeloid%20leukemia&journal=Int.%20J.%20Cancer&doi=10.1002%2Fijc.21584&volume=118&pages=1945-1953&publication_year=2006&author=Agirre%2CX) 
  1. Alegria-Torres, J. A., Baccarelli, A. & Bollati, V. Epigenetics and lifestyle. Epigenomics 3, 267–277 (2011).
[Article](https://doi.org/10.2217%2Fepi.11.22)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22122337)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3752894)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXotlCjsbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Epigenetics%20and%20lifestyle&journal=Epigenomics&doi=10.2217%2Fepi.11.22&volume=3&pages=267-277&publication_year=2011&author=Alegria-Torres%2CJA&author=Baccarelli%2CA&author=Bollati%2CV) 
  1. Linden, D. R. et al. Indiscriminate loss of myenteric neurones in the TNBS-inflamed guinea-pig distal colon. Neurogastroenterol. Motil. 17, 751–760 (2005).
[Article](https://doi.org/10.1111%2Fj.1365-2982.2005.00703.x)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD2Mrhtl2hsw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16185315)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Indiscriminate%20loss%20of%20myenteric%20neurones%20in%20the%20TNBS-inflamed%20guinea-pig%20distal%20colon&journal=Neurogastroenterol.%20Motil.&doi=10.1111%2Fj.1365-2982.2005.00703.x&volume=17&pages=751-760&publication_year=2005&author=Linden%2CDR) 
  1. Yissachar, N. et al. An intestinal organ culture system uncovers a role for the nervous system in microbe-immune crosstalk. Cell 168, 1135–1148 e1112 (2017).
[Article](https://doi.org/10.1016%2Fj.cell.2017.02.009)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXjvVWqtLg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28262351)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=An%20intestinal%20organ%20culture%20system%20uncovers%20a%20role%20for%20the%20nervous%20system%20in%20microbe-immune%20crosstalk&journal=Cell&doi=10.1016%2Fj.cell.2017.02.009&volume=168&pages=1135-1148%20e1112&publication_year=2017&author=Yissachar%2CN) 
  1. Krautkramer, K. A. et al. Diet-microbiota interactions mediate global epigenetic programming in multiple host tissues. Mol. Cell 64, 982–992 (2016).
[Article](https://doi.org/10.1016%2Fj.molcel.2016.10.025)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhvFGgtL7P)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27889451)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Diet-microbiota%20interactions%20mediate%20global%20epigenetic%20programming%20in%20multiple%20host%20tissues&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2016.10.025&volume=64&pages=982-992&publication_year=2016&author=Krautkramer%2CKA) 
  1. Wyss-Coray, T. Ageing, neurodegeneration and brain rejuvenation. Nature 539, 180–186 (2016).
[Article](https://doi.org/10.1038%2Fnature20411)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhvVaqs7vI)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27830812)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5172605)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ageing%2C%20neurodegeneration%20and%20brain%20rejuvenation&journal=Nature&doi=10.1038%2Fnature20411&volume=539&pages=180-186&publication_year=2016&author=Wyss-Coray%2CT) 
  1. Beatman, E. L. et al. Alpha-synuclein expression restricts RNA viral infections in the brain. J. Virol. 90, 2767–2782 (2015).
[Article](https://doi.org/10.1128%2FJVI.02949-15)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26719256)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhsFSqu7nN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alpha-synuclein%20expression%20restricts%20RNA%20viral%20infections%20in%20the%20brain&journal=J.%20Virol.&doi=10.1128%2FJVI.02949-15&volume=90&pages=2767-2782&publication_year=2015&author=Beatman%2CEL) 
  1. Stolzenberg, E. et al. A role for neuronal alpha-synuclein in gastrointestinal immunity. J. Innate Immun. 9, 456–463 (2017).
  1. Douet, J. Y. et al. PrP expression level and sensitivity to prion infection. J. Virol. 88, 5870–5872 (2014).
[Article](https://doi.org/10.1128%2FJVI.00369-14)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24574409)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019126)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhsVGnu7fP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=PrP%20expression%20level%20and%20sensitivity%20to%20prion%20infection&journal=J.%20Virol.&doi=10.1128%2FJVI.00369-14&volume=88&pages=5870-5872&publication_year=2014&author=Douet%2CJY) 

Page 2

Potential templating mechanism of α-synuclein from vertebrate meat products. a The pathogenic aggregation of α-synuclein may involve several steps. (I) The mechanism for pathogenic α-synuclein aggregation is unknown. However, several cellular factors such as transient interactions between the N-terminus and C-terminus (“Shielding”) or lipid binding may play a role in the initial aggregation; inhibitory or promoting. Also, interactions between non-amyloid component (NAC) domains is necessary and sufficient for aggregation (Colored red). (II) Once a self-propagating oligomer (depicted here as a protofibril) is formed it then elongates by the addition of α-synuclein monomers to the ends of fibril. (III) Mechanical fracturing of the fibril into smaller templates allows for further seeding. (IV) The seeding capacity during the templating step is highly dependent on factors such as homology between the template protein and the substrate protein. Homology of α-synuclein protein is high between human and several animals species humans eat. Phylogenic tree showing α-synuclein protein sequence homology between human (Homo Sapiens), pig (Sus Scrofa), cow (Bos Taurus), and chicken (Gallus Gallus). Reference bar 4% divergence in sequence homology. b Specific amino acid sequences for α-synuclein of all species compared. Red denotes variable positions adjacent to the NAC domain that greatly influence cross-species seeding. Blue denotes variable amino acid positions compared to human α-synuclein

Resumir
这篇文章综述了帕金森病的症状、治疗及其相关的神经病理学基础。首先,Vidailhet探讨了2010年帕金森病的症状和治疗方法,强调了早期诊断的重要性。Goldman和Postuma则关注于帕金森病的前驱和非运动特征,指出这些特征在疾病早期可能被忽视。Paulus和Jellinger研究了不同临床亚型的神经病理基础,揭示了帕金森病的复杂性。Gibb和Lees分析了黑质的解剖结构及其在帕金森病中的细胞死亡差异。Pankratz等人通过全基因组关联研究识别了与家族性帕金森病相关的易感基因。Stefanis讨论了α-突触核蛋白在帕金森病中的作用,强调其聚集与疾病进展的关系。Lavedan介绍了突触核蛋白家族的特性,而Uversky和Eliezer则探讨了α-突触核蛋白的生物物理特性及其聚集机制。这些研究为理解帕金森病的发病机制和潜在治疗策略提供了重要的科学依据。