Iron homeostasis and ferroptosis in human diseases: mechanisms and therapeutic prospects

contente
  1. Stockwell, B. R. Ferroptosis turns 10: emerging mechanisms, physiological functions, and therapeutic applications. Cell 185, 2401–2421 (2022).
[Article](https://doi.org/10.1016%2Fj.cell.2022.06.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35803244)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9273022)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhvVSgsb3J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20turns%2010%3A%20emerging%20mechanisms%2C%20physiological%20functions%2C%20and%20therapeutic%20applications&journal=Cell&doi=10.1016%2Fj.cell.2022.06.003&volume=185&pages=2401-2421&publication_year=2022&author=Stockwell%2CBR) 
  1. Dixon, S. J. & Olzmann, J. A. The cell biology of ferroptosis. Nat. Rev. Mol. Cell Biol. 25, 424–442 (2024).
[Article](https://doi.org/10.1038%2Fs41580-024-00703-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38366038)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXjvVamsrk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20cell%20biology%20of%20ferroptosis&journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&doi=10.1038%2Fs41580-024-00703-5&volume=25&pages=424-442&publication_year=2024&author=Dixon%2CSJ&author=Olzmann%2CJA) 
  1. Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021).
[Article](https://doi.org/10.1038%2Fs41580-020-00324-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33495651)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8142022)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20mechanisms%2C%20biology%20and%20role%20in%20disease&journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&doi=10.1038%2Fs41580-020-00324-8&volume=22&pages=266-282&publication_year=2021&author=Jiang%2CX&author=Stockwell%2CBR&author=Conrad%2CM) 
  1. Li, J. et al. Ferroptosis: past, present and future. Cell Death Dis. 11, 88 (2020).
[Article](https://doi.org/10.1038%2Fs41419-020-2298-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32015325)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6997353)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20past%2C%20present%20and%20future&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-020-2298-2&volume=11&publication_year=2020&author=Li%2CJ) 
  1. Berndt, C. et al. Ferroptosis in health and disease. Redox Biol. 75, 103211 (2024).
[Article](https://doi.org/10.1016%2Fj.redox.2024.103211)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38908072)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11253697)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhtlynur%2FK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20in%20health%20and%20disease&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2024.103211&volume=75&publication_year=2024&author=Berndt%2CC) 
  1. Zeng, F. et al. Ferroptosis detection: from approaches to applications. Angew. Chem. Int. Ed. Engl. 62, e202300379 (2023).
[Article](https://doi.org/10.1002%2Fanie.202300379)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36828775)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXmsFCnt7c%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20detection%3A%20from%20approaches%20to%20applications&journal=Angew.%20Chem.%20Int.%20Ed.%20Engl.&doi=10.1002%2Fanie.202300379&volume=62&publication_year=2023&author=Zeng%2CF) 
  1. Pan, J. et al. The imbalance of p53-Park7 signaling axis induces iron homeostasis dysfunction in doxorubicin-challenged cardiomyocytes. Adv. Sci. 10, e2206007 (2023).
[Article](https://doi.org/10.1002%2Fadvs.202206007)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20imbalance%20of%20p53-Park7%20signaling%20axis%20induces%20iron%20homeostasis%20dysfunction%20in%20doxorubicin-challenged%20cardiomyocytes&journal=Adv.%20Sci.&doi=10.1002%2Fadvs.202206007&volume=10&publication_year=2023&author=Pan%2CJ) 
  1. Liang, D., Minikes, A. M. & Jiang, X. Ferroptosis at the intersection of lipid metabolism and cellular signaling. Mol. Cell 82, 2215–2227 (2022).
[Article](https://doi.org/10.1016%2Fj.molcel.2022.03.022)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35390277)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233073)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XptFGrtrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20at%20the%20intersection%20of%20lipid%20metabolism%20and%20cellular%20signaling&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2022.03.022&volume=82&pages=2215-2227&publication_year=2022&author=Liang%2CD&author=Minikes%2CAM&author=Jiang%2CX) 
  1. Tang, D., Chen, X., Kang, R. & Kroemer, G. Ferroptosis: molecular mechanisms and health implications. Cell Res. 31, 107–125 (2021).
[Article](https://doi.org/10.1038%2Fs41422-020-00441-1)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33268902)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXisFyru73O)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20molecular%20mechanisms%20and%20health%20implications&journal=Cell%20Res.&doi=10.1038%2Fs41422-020-00441-1&volume=31&pages=107-125&publication_year=2021&author=Tang%2CD&author=Chen%2CX&author=Kang%2CR&author=Kroemer%2CG) 
  1. Li, W. et al. FSP1: a key regulator of ferroptosis. Trends Mol. Med. 29, 753–764 (2023).
[Article](https://doi.org/10.1016%2Fj.molmed.2023.05.013)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37357101)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht12itrnE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=FSP1%3A%20a%20key%20regulator%20of%20ferroptosis&journal=Trends%20Mol.%20Med.&doi=10.1016%2Fj.molmed.2023.05.013&volume=29&pages=753-764&publication_year=2023&author=Li%2CW) 
  1. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).
[Article](https://doi.org/10.1016%2Fj.cell.2012.03.042)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22632970)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367386)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XnslSntrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20an%20iron-dependent%20form%20of%20nonapoptotic%20cell%20death&journal=Cell&doi=10.1016%2Fj.cell.2012.03.042&volume=149&pages=1060-1072&publication_year=2012&author=Dixon%2CSJ) 
  1. Peng, F. et al. Regulated cell death (RCD) in cancer: key pathways and targeted therapies. Signal Transduct. Target Ther. 7, 286 (2022).
[Article](https://doi.org/10.1038%2Fs41392-022-01110-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35963853)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9376115)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XitFGmu7fO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulated%20cell%20death%20%28RCD%29%20in%20cancer%3A%20key%20pathways%20and%20targeted%20therapies&journal=Signal%20Transduct.%20Target%20Ther.&doi=10.1038%2Fs41392-022-01110-y&volume=7&publication_year=2022&author=Peng%2CF) 
  1. Liao, M. et al. Targeting regulated cell death (RCD) with small-molecule compounds in triple-negative breast cancer: a revisited perspective from molecular mechanisms to targeted therapies. J. Hematol. Oncol. 15, 44 (2022).
[Article](https://link.springer.com/doi/10.1186/s13045-022-01260-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35414025)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9006445)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhtVOqur7O)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20regulated%20cell%20death%20%28RCD%29%20with%20small-molecule%20compounds%20in%20triple-negative%20breast%20cancer%3A%20a%20revisited%20perspective%20from%20molecular%20mechanisms%20to%20targeted%20therapies&journal=J.%20Hematol.%20Oncol.&doi=10.1186%2Fs13045-022-01260-0&volume=15&publication_year=2022&author=Liao%2CM) 
  1. Qin, R. et al. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J. Hematol. Oncol. 15, 133 (2022).
[Article](https://link.springer.com/doi/10.1186/s13045-022-01350-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36104717)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9471064)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Naturally%20derived%20indole%20alkaloids%20targeting%20regulated%20cell%20death%20%28RCD%29%20for%20cancer%20therapy%3A%20from%20molecular%20mechanisms%20to%20potential%20therapeutic%20targets&journal=J.%20Hematol.%20Oncol.&doi=10.1186%2Fs13045-022-01350-z&volume=15&publication_year=2022&author=Qin%2CR) 
  1. Sun, S. et al. Targeting ferroptosis opens new avenues for the development of novel therapeutics. Signal Transduct. Target Ther. 8, 372 (2023).
[Article](https://doi.org/10.1038%2Fs41392-023-01606-1)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37735472)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10514338)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20ferroptosis%20opens%20new%20avenues%20for%20the%20development%20of%20novel%20therapeutics&journal=Signal%20Transduct.%20Target%20Ther.&doi=10.1038%2Fs41392-023-01606-1&volume=8&publication_year=2023&author=Sun%2CS) 
  1. Aisen, P., Enns, C. & Wessling-Resnick, M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 33, 940–959 (2001).
[Article](https://doi.org/10.1016%2FS1357-2725%2801%2900063-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11470229)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXlt1Sisbw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Chemistry%20and%20biology%20of%20eukaryotic%20iron%20metabolism&journal=Int.%20J.%20Biochem.%20Cell%20Biol.&doi=10.1016%2FS1357-2725%2801%2900063-2&volume=33&pages=940-959&publication_year=2001&author=Aisen%2CP&author=Enns%2CC&author=Wessling-Resnick%2CM) 
  1. Zhang, D. D. Ironing out the details of ferroptosis. Nat. Cell Biol. 26, 386–1393 (2024).
[Article](https://doi.org/10.1038%2Fs41556-024-01361-7)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ironing%20out%20the%20details%20of%20ferroptosis&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fs41556-024-01361-7&volume=26&pages=386-1393&publication_year=2024&author=Zhang%2CDD) 
  1. Hentze, M. W., Muckenthaler, M. U., Galy, B. & Camaschella, C. Two to tango: regulation of Mammalian iron metabolism. Cell 142, 24–38 (2010).
[Article](https://doi.org/10.1016%2Fj.cell.2010.06.028)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20603012)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXpt1Cjt7k%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Two%20to%20tango%3A%20regulation%20of%20Mammalian%20iron%20metabolism&journal=Cell&doi=10.1016%2Fj.cell.2010.06.028&volume=142&pages=24-38&publication_year=2010&author=Hentze%2CMW&author=Muckenthaler%2CMU&author=Galy%2CB&author=Camaschella%2CC) 
  1. Hentze, M. W., Muckenthaler, M. U. & Andrews, N. C. Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004).
[Article](https://doi.org/10.1016%2FS0092-8674%2804%2900343-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15109490)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXjvFemsbg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Balancing%20acts%3A%20molecular%20control%20of%20mammalian%20iron%20metabolism&journal=Cell&doi=10.1016%2FS0092-8674%2804%2900343-5&volume=117&pages=285-297&publication_year=2004&author=Hentze%2CMW&author=Muckenthaler%2CMU&author=Andrews%2CNC) 
  1. Yu, Y. et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood 136, 726–739 (2020).
[Article](https://doi.org/10.1182%2Fblood.2019002907)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32374849)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414596)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhs1OhtLfE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepatic%20transferrin%20plays%20a%20role%20in%20systemic%20iron%20homeostasis%20and%20liver%20ferroptosis&journal=Blood&doi=10.1182%2Fblood.2019002907&volume=136&pages=726-739&publication_year=2020&author=Yu%2CY) 
  1. Dutt, S., Hamza, I. & Bartnikas, T. B. Molecular mechanisms of iron and heme metabolism. Annu Rev. Nutr. 42, 311–335 (2022).
[Article](https://doi.org/10.1146%2Fannurev-nutr-062320-112625)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35508203)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9398995)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xht1ShtbrN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Molecular%20mechanisms%20of%20iron%20and%20heme%20metabolism&journal=Annu%20Rev.%20Nutr.&doi=10.1146%2Fannurev-nutr-062320-112625&volume=42&pages=311-335&publication_year=2022&author=Dutt%2CS&author=Hamza%2CI&author=Bartnikas%2CTB) 
  1. Park, C. H., Valore, E. V., Waring, A. J. & Ganz, T. Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J. Biol. Chem. 276, 7806–7810 (2001).
[Article](https://doi.org/10.1074%2Fjbc.M008922200)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11113131)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXitFKhtbo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepcidin%2C%20a%20urinary%20antimicrobial%20peptide%20synthesized%20in%20the%20liver&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M008922200&volume=276&pages=7806-7810&publication_year=2001&author=Park%2CCH&author=Valore%2CEV&author=Waring%2CAJ&author=Ganz%2CT) 
  1. Gao, J. et al. Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell Metab. 9, 217–227 (2009).
[Article](https://doi.org/10.1016%2Fj.cmet.2009.01.010)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19254567)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673483)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXntlSjsrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Interaction%20of%20the%20hereditary%20hemochromatosis%20protein%20HFE%20with%20transferrin%20receptor%202%20is%20required%20for%20transferrin-induced%20hepcidin%20expression&journal=Cell%20Metab.&doi=10.1016%2Fj.cmet.2009.01.010&volume=9&pages=217-227&publication_year=2009&author=Gao%2CJ) 
  1. Babitt, J. L. et al. Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nat. Genet. 38, 531–539 (2006).
[Article](https://doi.org/10.1038%2Fng1777)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16604073)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XjvVGktrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Bone%20morphogenetic%20protein%20signaling%20by%20hemojuvelin%20regulates%20hepcidin%20expression&journal=Nat.%20Genet.&doi=10.1038%2Fng1777&volume=38&pages=531-539&publication_year=2006&author=Babitt%2CJL) 
  1. Arezes, J. et al. Erythroferrone inhibits the induction of hepcidin by BMP6. Blood 132, 1473–1477 (2018).
[Article](https://doi.org/10.1182%2Fblood-2018-06-857995)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30097509)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6238155)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXitVems7nF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Erythroferrone%20inhibits%20the%20induction%20of%20hepcidin%20by%20BMP6&journal=Blood&doi=10.1182%2Fblood-2018-06-857995&volume=132&pages=1473-1477&publication_year=2018&author=Arezes%2CJ) 
  1. Nemeth, E. et al. IL-6 mediates hypoferremia of inflammation by inducing the synthesis of the iron regulatory hormone hepcidin. J. Clin. Investig. 113, 1271–1276 (2004).
[Article](https://doi.org/10.1172%2FJCI200420945)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15124018)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC398432)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXjvVOqsrY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=IL-6%20mediates%20hypoferremia%20of%20inflammation%20by%20inducing%20the%20synthesis%20of%20the%20iron%20regulatory%20hormone%20hepcidin&journal=J.%20Clin.%20Investig.&doi=10.1172%2FJCI200420945&volume=113&pages=1271-1276&publication_year=2004&author=Nemeth%2CE) 
  1. Roemhild, K. et al. Iron metabolism: pathophysiology and pharmacology. Trends Pharm. Sci. 42, 640–656 (2021).
[Article](https://doi.org/10.1016%2Fj.tips.2021.05.001)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34090703)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXht1SlsbfK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20metabolism%3A%20pathophysiology%20and%20pharmacology&journal=Trends%20Pharm.%20Sci.&doi=10.1016%2Fj.tips.2021.05.001&volume=42&pages=640-656&publication_year=2021&author=Roemhild%2CK) 
  1. Mastrogiannaki, M. et al. Hepatic hypoxia-inducible factor-2 down-regulates hepcidin expression in mice through an erythropoietin-mediated increase in erythropoiesis. Haematologica 97, 827–834 (2012).
[Article](https://doi.org/10.3324%2Fhaematol.2011.056119)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22207682)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3366646)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xhs1Wqu7jP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepatic%20hypoxia-inducible%20factor-2%20down-regulates%20hepcidin%20expression%20in%20mice%20through%20an%20erythropoietin-mediated%20increase%20in%20erythropoiesis&journal=Haematologica&doi=10.3324%2Fhaematol.2011.056119&volume=97&pages=827-834&publication_year=2012&author=Mastrogiannaki%2CM) 
  1. Beavers, C. J. et al. Iron deficiency in heart failure: a scientific statement from the heart failure society of America. J. Card. Fail. 29, 1059–1077 (2023).
[Article](https://doi.org/10.1016%2Fj.cardfail.2023.03.025)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37137386)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20deficiency%20in%20heart%20failure%3A%20a%20scientific%20statement%20from%20the%20heart%20failure%20society%20of%20America&journal=J.%20Card.%20Fail.&doi=10.1016%2Fj.cardfail.2023.03.025&volume=29&pages=1059-1077&publication_year=2023&author=Beavers%2CCJ) 
  1. Pasricha, S. R., Tye-Din, J., Muckenthaler, M. U. & Swinkels, D. W. Iron deficiency. Lancet 397, 233–248 (2021).
[Article](https://doi.org/10.1016%2FS0140-6736%2820%2932594-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33285139)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXisFCgs7zE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20deficiency&journal=Lancet&doi=10.1016%2FS0140-6736%2820%2932594-0&volume=397&pages=233-248&publication_year=2021&author=Pasricha%2CSR&author=Tye-Din%2CJ&author=Muckenthaler%2CMU&author=Swinkels%2CDW) 
  1. Roy, R., Kuck, M., Radziwolek, L. & Kerling, A. Iron deficiency in adolescent and young adult German athletes-a retrospective study. Nutrients 14, 4511 (2022).
  1. Chambers, I. G., Willoughby, M. M., Hamza, I. & Reddi, A. R. One ring to bring them all and in the darkness bind them: The trafficking of heme without deliverers. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118881 (2021).
[Article](https://doi.org/10.1016%2Fj.bbamcr.2020.118881)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33022276)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitFOhtbbN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=One%20ring%20to%20bring%20them%20all%20and%20in%20the%20darkness%20bind%20them%3A%20The%20trafficking%20of%20heme%20without%20deliverers&journal=Biochim.%20Biophys.%20Acta%20Mol.%20Cell%20Res.&doi=10.1016%2Fj.bbamcr.2020.118881&volume=1868&publication_year=2021&author=Chambers%2CIG&author=Willoughby%2CMM&author=Hamza%2CI&author=Reddi%2CAR) 
  1. Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).
[Article](https://doi.org/10.1016%2Fj.cell.2016.12.034)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28129536)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706455)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhslaqsL4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20red%20carpet%20for%20iron%20metabolism&journal=Cell&doi=10.1016%2Fj.cell.2016.12.034&volume=168&pages=344-361&publication_year=2017&author=Muckenthaler%2CMU&author=Rivella%2CS&author=Hentze%2CMW&author=Galy%2CB) 
  1. Cappellini, M. D. et al. Iron deficiency across chronic inflammatory conditions: international expert opinion on definition, diagnosis, and management. Am. J. Hematol. 92, 1068–1078 (2017).
[Article](https://doi.org/10.1002%2Fajh.24820)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28612425)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5599965)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhsVKhtLvK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20deficiency%20across%20chronic%20inflammatory%20conditions%3A%20international%20expert%20opinion%20on%20definition%2C%20diagnosis%2C%20and%20management&journal=Am.%20J.%20Hematol.&doi=10.1002%2Fajh.24820&volume=92&pages=1068-1078&publication_year=2017&author=Cappellini%2CMD) 
  1. Yang, J., Li, Q., Feng, Y. & Zeng, Y. Iron deficiency and iron deficiency anemia: potential risk factors in bone loss. Int. J. Mol. Sci. 24, 6891 (2023).
  1. Dziegala, M. et al. Iron deficiency as energetic insult to skeletal muscle in chronic diseases. J. Cachexia Sarcopenia Muscle 9, 802–815 (2018).
[Article](https://doi.org/10.1002%2Fjcsm.12314)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30178922)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6204587)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20deficiency%20as%20energetic%20insult%20to%20skeletal%20muscle%20in%20chronic%20diseases&journal=J.%20Cachexia%20Sarcopenia%20Muscle&doi=10.1002%2Fjcsm.12314&volume=9&pages=802-815&publication_year=2018&author=Dziegala%2CM) 
  1. Vinke, J. S. J. et al. Iron deficiency is related to lower muscle mass in community-dwelling individuals and impairs myoblast proliferation. J. Cachexia Sarcopenia Muscle 14, 1865–1879 (2023).
[Article](https://doi.org/10.1002%2Fjcsm.13277)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37386912)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10401536)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20deficiency%20is%20related%20to%20lower%20muscle%20mass%20in%20community-dwelling%20individuals%20and%20impairs%20myoblast%20proliferation&journal=J.%20Cachexia%20Sarcopenia%20Muscle&doi=10.1002%2Fjcsm.13277&volume=14&pages=1865-1879&publication_year=2023&author=Vinke%2CJSJ) 
  1. Xu, W. et al. Lethal cardiomyopathy in mice lacking transferrin receptor in the heart. Cell Rep. 13, 533–545 (2015).
[Article](https://doi.org/10.1016%2Fj.celrep.2015.09.023)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26456827)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4618069)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lethal%20cardiomyopathy%20in%20mice%20lacking%20transferrin%20receptor%20in%20the%20heart&journal=Cell%20Rep.&doi=10.1016%2Fj.celrep.2015.09.023&volume=13&pages=533-545&publication_year=2015&author=Xu%2CW) 
  1. Fleming, R. E. & Ponka, P. Iron overload in human disease. N. Engl. J. Med. 366, 348–359 (2012).
[Article](https://doi.org/10.1056%2FNEJMra1004967)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22276824)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xhs1aqsLk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20overload%20in%20human%20disease&journal=N.%20Engl.%20J.%20Med.&doi=10.1056%2FNEJMra1004967&volume=366&pages=348-359&publication_year=2012&author=Fleming%2CRE&author=Ponka%2CP) 
  1. Gattermann, N. et al. The evaluation of iron deficiency and iron overload. Dtsch. Arztebl. Int. 118, 847–856 (2021).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34755596)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8941656)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20evaluation%20of%20iron%20deficiency%20and%20iron%20overload&journal=Dtsch.%20Arztebl.%20Int.&volume=118&pages=847-856&publication_year=2021&author=Gattermann%2CN) 
  1. Corradini, E., Buzzetti, E. & Pietrangelo, A. Genetic iron overload disorders. Mol. Asp. Med. 75, 100896 (2020).
[Article](https://doi.org/10.1016%2Fj.mam.2020.100896)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhslOjurbF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Genetic%20iron%20overload%20disorders&journal=Mol.%20Asp.%20Med.&doi=10.1016%2Fj.mam.2020.100896&volume=75&publication_year=2020&author=Corradini%2CE&author=Buzzetti%2CE&author=Pietrangelo%2CA) 
  1. Piperno, A. Classification and diagnosis of iron overload. Haematologica 83, 447–455 (1998).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9658731)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK1czit1yltQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Classification%20and%20diagnosis%20of%20iron%20overload&journal=Haematologica&volume=83&pages=447-455&publication_year=1998&author=Piperno%2CA) 
  1. Reeder, S. B. et al. Quantification of liver iron overload with MRI: review and guidelines from the ESGAR and SAR. Radiology 307, e221856 (2023).
[Article](https://doi.org/10.1148%2Fradiol.221856)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36809220)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Quantification%20of%20liver%20iron%20overload%20with%20MRI%3A%20review%20and%20guidelines%20from%20the%20ESGAR%20and%20SAR&journal=Radiology&doi=10.1148%2Fradiol.221856&volume=307&publication_year=2023&author=Reeder%2CSB) 
  1. Niederau, C. et al. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N. Engl. J. Med. 313, 1256–1262 (1985).
[Article](https://doi.org/10.1056%2FNEJM198511143132004)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=4058506)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaL28%2FktVansw%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Survival%20and%20causes%20of%20death%20in%20cirrhotic%20and%20in%20noncirrhotic%20patients%20with%20primary%20hemochromatosis&journal=N.%20Engl.%20J.%20Med.&doi=10.1056%2FNEJM198511143132004&volume=313&pages=1256-1262&publication_year=1985&author=Niederau%2CC) 
  1. Handa, P. et al. Iron alters macrophage polarization status and leads to steatohepatitis and fibrogenesis. J. Leukoc. Biol. 105, 1015–1026 (2019).
[Article](https://doi.org/10.1002%2FJLB.3A0318-108R)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30835899)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXktFSnu74%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20alters%20macrophage%20polarization%20status%20and%20leads%20to%20steatohepatitis%20and%20fibrogenesis&journal=J.%20Leukoc.%20Biol.&doi=10.1002%2FJLB.3A0318-108R&volume=105&pages=1015-1026&publication_year=2019&author=Handa%2CP) 
  1. Sumneang, N. et al. The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes. Arch. Biochem. Biophys. 680, 108241 (2020).
[Article](https://doi.org/10.1016%2Fj.abb.2019.108241)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31891670)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXis1Ohsw%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20effects%20of%20iron%20overload%20on%20mitochondrial%20function%2C%20mitochondrial%20dynamics%2C%20and%20ferroptosis%20in%20cardiomyocytes&journal=Arch.%20Biochem.%20Biophys.&doi=10.1016%2Fj.abb.2019.108241&volume=680&publication_year=2020&author=Sumneang%2CN) 
  1. Vinchi, F. et al. Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur. Heart J. 41, 2681–2695 (2020).
[Article](https://doi.org/10.1093%2Feurheartj%2Fehz112)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30903157)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitlKnt77F)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Atherosclerosis%20is%20aggravated%20by%20iron%20overload%20and%20ameliorated%20by%20dietary%20and%20pharmacological%20iron%20restriction&journal=Eur.%20Heart%20J.&doi=10.1093%2Feurheartj%2Fehz112&volume=41&pages=2681-2695&publication_year=2020&author=Vinchi%2CF) 
  1. Cornelissen, A. et al. New insights into the role of iron in inflammation and atherosclerosis. EBioMedicine 47, 598–606 (2019).
[Article](https://doi.org/10.1016%2Fj.ebiom.2019.08.014)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31416722)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6796517)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=New%20insights%20into%20the%20role%20of%20iron%20in%20inflammation%20and%20atherosclerosis&journal=EBioMedicine&doi=10.1016%2Fj.ebiom.2019.08.014&volume=47&pages=598-606&publication_year=2019&author=Cornelissen%2CA) 
  1. Ward, R. J. & Crichton, R. R. Ironing out the brain. Met. Ions Life Sci. 19 (2019).
  1. Qian, Z. M. & Ke, Y. Hepcidin and its therapeutic potential in neurodegenerative disorders. Med. Res. Rev. 40, 633–653 (2020).
[Article](https://doi.org/10.1002%2Fmed.21631)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31471929)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXjtVWkt7k%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepcidin%20and%20its%20therapeutic%20potential%20in%20neurodegenerative%20disorders&journal=Med.%20Res.%20Rev.&doi=10.1002%2Fmed.21631&volume=40&pages=633-653&publication_year=2020&author=Qian%2CZM&author=Ke%2CY) 
  1. Garton, T., Keep, R. F., Hua, Y. & Xi, G. Brain iron overload following intracranial haemorrhage. Stroke Vasc. Neurol. 1, 172–184 (2016).
[Article](https://doi.org/10.1136%2Fsvn-2016-000042)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28959481)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5435218)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Brain%20iron%20overload%20following%20intracranial%20haemorrhage&journal=Stroke%20Vasc.%20Neurol.&doi=10.1136%2Fsvn-2016-000042&volume=1&pages=172-184&publication_year=2016&author=Garton%2CT&author=Keep%2CRF&author=Hua%2CY&author=Xi%2CG) 
  1. Ganz, T. & Nemeth, E. Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 15, 500–510 (2015).
[Article](https://doi.org/10.1038%2Fnri3863)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26160612)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4801113)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFyks7bP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20homeostasis%20in%20host%20defence%20and%20inflammation&journal=Nat.%20Rev.%20Immunol.&doi=10.1038%2Fnri3863&volume=15&pages=500-510&publication_year=2015&author=Ganz%2CT&author=Nemeth%2CE) 
  1. Stefanova, D. et al. Endogenous hepcidin and its agonist mediate resistance to selected infections by clearing non-transferrin-bound iron. Blood 130, 245–257 (2017).
[Article](https://doi.org/10.1182%2Fblood-2017-03-772715)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28465342)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5520472)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhslWhsLnP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Endogenous%20hepcidin%20and%20its%20agonist%20mediate%20resistance%20to%20selected%20infections%20by%20clearing%20non-transferrin-bound%20iron&journal=Blood&doi=10.1182%2Fblood-2017-03-772715&volume=130&pages=245-257&publication_year=2017&author=Stefanova%2CD) 
  1. Cavezzi, A., Troiani, E. & Corrao, S. COVID-19: hemoglobin, iron, and hypoxia beyond inflammation. a narrative review. Clin. Pr. 10, 1271 (2020).
[Article](https://doi.org/10.4081%2Fcp.2020.1271)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=COVID-19%3A%20hemoglobin%2C%20iron%2C%20and%20hypoxia%20beyond%20inflammation.%20a%20narrative%20review&journal=Clin.%20Pr.&doi=10.4081%2Fcp.2020.1271&volume=10&publication_year=2020&author=Cavezzi%2CA&author=Troiani%2CE&author=Corrao%2CS) 
  1. Torti, S. V. et al. Iron and Cancer. Annu Rev. Nutr. 38, 97–125 (2018).
[Article](https://doi.org/10.1146%2Fannurev-nutr-082117-051732)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30130469)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8118195)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsFKqtbrF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20Cancer&journal=Annu%20Rev.%20Nutr.&doi=10.1146%2Fannurev-nutr-082117-051732&volume=38&pages=97-125&publication_year=2018&author=Torti%2CSV) 
  1. Simcox, J. A. & McClain, D. A. Iron and diabetes risk. Cell Metab. 17, 329–341 (2013).
[Article](https://doi.org/10.1016%2Fj.cmet.2013.02.007)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23473030)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3648340)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXktFaqsbk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20diabetes%20risk&journal=Cell%20Metab.&doi=10.1016%2Fj.cmet.2013.02.007&volume=17&pages=329-341&publication_year=2013&author=Simcox%2CJA&author=McClain%2CDA) 
  1. Harrison, A. V., Lorenzo, F. R. & McClain, D. A. Iron and the pathophysiology of diabetes. Annu. Rev. Physiol. 85, 339–362 (2023).
[Article](https://doi.org/10.1146%2Fannurev-physiol-022522-102832)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36137277)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XisVKnsb%2FL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20the%20pathophysiology%20of%20diabetes&journal=Annu.%20Rev.%20Physiol.&doi=10.1146%2Fannurev-physiol-022522-102832&volume=85&pages=339-362&publication_year=2023&author=Harrison%2CAV&author=Lorenzo%2CFR&author=McClain%2CDA) 
  1. Alves, F. M. et al. Age-related changes in skeletal muscle iron homeostasis. J. Gerontol. A Biol. Sci. Med. Sci. 78, 16–24 (2023).
[Article](https://doi.org/10.1093%2Fgerona%2Fglac139)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35869751)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslWmu7zK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Age-related%20changes%20in%20skeletal%20muscle%20iron%20homeostasis&journal=J.%20Gerontol.%20A%20Biol.%20Sci.%20Med.%20Sci.&doi=10.1093%2Fgerona%2Fglac139&volume=78&pages=16-24&publication_year=2023&author=Alves%2CFM) 
  1. Tsay, J. et al. Bone loss caused by iron overload in a murine model: importance of oxidative stress. Blood 116, 2582–2589 (2010).
[Article](https://doi.org/10.1182%2Fblood-2009-12-260083)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20554970)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2953890)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXhtlyqt7fN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Bone%20loss%20caused%20by%20iron%20overload%20in%20a%20murine%20model%3A%20importance%20of%20oxidative%20stress&journal=Blood&doi=10.1182%2Fblood-2009-12-260083&volume=116&pages=2582-2589&publication_year=2010&author=Tsay%2CJ) 
  1. Zhang, H. et al. The influence of iron on bone metabolism disorders. Osteoporos. Int. 35, 243–253 (2024).
[Article](https://link.springer.com/doi/10.1007/s00198-023-06937-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37857915)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20influence%20of%20iron%20on%20bone%20metabolism%20disorders&journal=Osteoporos.%20Int.&doi=10.1007%2Fs00198-023-06937-x&volume=35&pages=243-253&publication_year=2024&author=Zhang%2CH) 
  1. Ru, Q. et al. Fighting age-related orthopedic diseases: focusing on ferroptosis. Bone Res 11, 12 (2023).
[Article](https://doi.org/10.1038%2Fs41413-023-00247-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36854703)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9975200)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXktFOkur4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Fighting%20age-related%20orthopedic%20diseases%3A%20focusing%20on%20ferroptosis&journal=Bone%20Res&doi=10.1038%2Fs41413-023-00247-y&volume=11&publication_year=2023&author=Ru%2CQ) 
  1. Zhang, Z. et al. Discovery of benzylisothioureas as potent divalent metal transporter 1 (DMT1) inhibitors. Bioorg. Med Chem. Lett. 22, 5108–5113 (2012).
[Article](https://doi.org/10.1016%2Fj.bmcl.2012.05.129)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22749870)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xps1Kmtr0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Discovery%20of%20benzylisothioureas%20as%20potent%20divalent%20metal%20transporter%201%20%28DMT1%29%20inhibitors&journal=Bioorg.%20Med%20Chem.%20Lett.&doi=10.1016%2Fj.bmcl.2012.05.129&volume=22&pages=5108-5113&publication_year=2012&author=Zhang%2CZ) 
  1. Wetli, H. A., Buckett, P. D. & Wessling-Resnick, M. Small-molecule screening identifies the selanazal drug ebselen as a potent inhibitor of DMT1-mediated iron uptake. Chem. Biol. 13, 965–972 (2006).
[Article](https://doi.org/10.1016%2Fj.chembiol.2006.08.005)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16984886)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2542486)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28Xps1Gisr0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Small-molecule%20screening%20identifies%20the%20selanazal%20drug%20ebselen%20as%20a%20potent%20inhibitor%20of%20DMT1-mediated%20iron%20uptake&journal=Chem.%20Biol.&doi=10.1016%2Fj.chembiol.2006.08.005&volume=13&pages=965-972&publication_year=2006&author=Wetli%2CHA&author=Buckett%2CPD&author=Wessling-Resnick%2CM) 
  1. Altamura, S. et al. SLN124, a GalNAc-siRNA conjugate targeting TMPRSS6, efficiently prevents iron overload in hereditary haemochromatosis type 1. Hemasphere 3, e301 (2019).
[Article](https://doi.org/10.1097%2FHS9.0000000000000301)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31976476)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6924545)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=SLN124%2C%20a%20GalNAc-siRNA%20conjugate%20targeting%20TMPRSS6%2C%20efficiently%20prevents%20iron%20overload%20in%20hereditary%20haemochromatosis%20type%201&journal=Hemasphere&doi=10.1097%2FHS9.0000000000000301&volume=3&publication_year=2019&author=Altamura%2CS) 
  1. Arezes, J. et al. Antibodies against the erythroferrone N-terminal domain prevent hepcidin suppression and ameliorate murine thalassemia. Blood 135, 547–557 (2020).
[Article](https://doi.org/10.1182%2Fblood.2019003140)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31899794)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7046598)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Antibodies%20against%20the%20erythroferrone%20N-terminal%20domain%20prevent%20hepcidin%20suppression%20and%20ameliorate%20murine%20thalassemia&journal=Blood&doi=10.1182%2Fblood.2019003140&volume=135&pages=547-557&publication_year=2020&author=Arezes%2CJ) 
  1. Gao, M. et al. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell 59, 298–308 (2015).
[Article](https://doi.org/10.1016%2Fj.molcel.2015.06.011)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26166707)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4506736)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFCqtbbK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Glutaminolysis%20and%20transferrin%20regulate%20ferroptosis&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2015.06.011&volume=59&pages=298-308&publication_year=2015&author=Gao%2CM) 
  1. Fang, X. et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ. Res 127, 486–501 (2020).
[Article](https://doi.org/10.1161%2FCIRCRESAHA.120.316509)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32349646)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsV2mt73M)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Loss%20of%20cardiac%20ferritin%20H%20facilitates%20cardiomyopathy%20via%20Slc7a11-mediated%20ferroptosis&journal=Circ.%20Res&doi=10.1161%2FCIRCRESAHA.120.316509&volume=127&pages=486-501&publication_year=2020&author=Fang%2CX) 
  1. Geng, N. et al. Knockdown of ferroportin accelerates erastin-induced ferroptosis in neuroblastoma cells. Eur. Rev. Med Pharm. Sci. 22, 3826–3836 (2018).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BB3c%2FisVGmtQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Knockdown%20of%20ferroportin%20accelerates%20erastin-induced%20ferroptosis%20in%20neuroblastoma%20cells&journal=Eur.%20Rev.%20Med%20Pharm.%20Sci.&volume=22&pages=3826-3836&publication_year=2018&author=Geng%2CN) 
  1. Katsarou, A. & Pantopoulos, K. Hepcidin therapeutics. Pharmaceuticals 11, 127 (2018).
  1. Le, Y., Zhang, Z., Wang, C. & Lu, D. Ferroptotic cell death: new regulatory mechanisms for metabolic diseases. Endocr. Metab. Immune Disord. Drug Targets 21, 785–800 (2021).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32735532)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtFekur3O)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptotic%20cell%20death%3A%20new%20regulatory%20mechanisms%20for%20metabolic%20diseases&journal=Endocr.%20Metab.%20Immune%20Disord.%20Drug%20Targets&volume=21&pages=785-800&publication_year=2021&author=Le%2CY&author=Zhang%2CZ&author=Wang%2CC&author=Lu%2CD) 
  1. Minotti, G. & Aust, S. D. The role of iron in oxygen radical mediated lipid peroxidation. Chem. Biol. Interact. 71, 1–19 (1989).
[Article](https://doi.org/10.1016%2F0009-2797%2889%2990087-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2550151)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaL1MXmt1Ogsr4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20iron%20in%20oxygen%20radical%20mediated%20lipid%20peroxidation&journal=Chem.%20Biol.%20Interact.&doi=10.1016%2F0009-2797%2889%2990087-2&volume=71&pages=1-19&publication_year=1989&author=Minotti%2CG&author=Aust%2CSD) 
  1. Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017).
[Article](https://doi.org/10.1038%2Fnchembio.2239)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27842070)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhvVGgtLrL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ACSL4%20dictates%20ferroptosis%20sensitivity%20by%20shaping%20cellular%20lipid%20composition&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio.2239&volume=13&pages=91-98&publication_year=2017&author=Doll%2CS) 
  1. Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420-432 (2019).
  1. Cui, J. et al. LPCAT3 is transcriptionally regulated by YAP/ZEB/EP300 and collaborates with ACSL4 and YAP to determine ferroptosis sensitivity. Antioxid. Redox Signal. 39, 491–511 (2023).
[Article](https://doi.org/10.1089%2Fars.2023.0237)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37166352)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitVCjs7nK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=LPCAT3%20is%20transcriptionally%20regulated%20by%20YAP%2FZEB%2FEP300%20and%20collaborates%20with%20ACSL4%20and%20YAP%20to%20determine%20ferroptosis%20sensitivity&journal=Antioxid.%20Redox%20Signal.&doi=10.1089%2Fars.2023.0237&volume=39&pages=491-511&publication_year=2023&author=Cui%2CJ) 
  1. Chu, B. et al. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat. Cell Biol. 21, 579–591 (2019).
[Article](https://doi.org/10.1038%2Fs41556-019-0305-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30962574)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6624840)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXoslans7s%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ALOX12%20is%20required%20for%20p53-mediated%20tumour%20suppression%20through%20a%20distinct%20ferroptosis%20pathway&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fs41556-019-0305-6&volume=21&pages=579-591&publication_year=2019&author=Chu%2CB) 
  1. Forcina, G. C. & Dixon, S. J. GPX4 at the crossroads of lipid homeostasis and ferroptosis. Proteomics 19, e1800311 (2019).
[Article](https://doi.org/10.1002%2Fpmic.201800311)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30888116)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=GPX4%20at%20the%20crossroads%20of%20lipid%20homeostasis%20and%20ferroptosis&journal=Proteomics&doi=10.1002%2Fpmic.201800311&volume=19&publication_year=2019&author=Forcina%2CGC&author=Dixon%2CSJ) 
  1. Forman, H. J., Zhang, H. & Rinna, A. Glutathione: overview of its protective roles, measurement, and biosynthesis. Mol. Asp. Med. 30, 1–12 (2009).
[Article](https://doi.org/10.1016%2Fj.mam.2008.08.006)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXltFelurY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Glutathione%3A%20overview%20of%20its%20protective%20roles%2C%20measurement%2C%20and%20biosynthesis&journal=Mol.%20Asp.%20Med.&doi=10.1016%2Fj.mam.2008.08.006&volume=30&pages=1-12&publication_year=2009&author=Forman%2CHJ&author=Zhang%2CH&author=Rinna%2CA) 
  1. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).
[Article](https://doi.org/10.1016%2Fj.cell.2013.12.010)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24439385)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076414)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtF2is70%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20ferroptotic%20cancer%20cell%20death%20by%20GPX4&journal=Cell&doi=10.1016%2Fj.cell.2013.12.010&volume=156&pages=317-331&publication_year=2014&author=Yang%2CWS) 
  1. Chen, Z., Putt, D. A. & Lash, L. H. Enrichment and functional reconstitution of glutathione transport activity from rabbit kidney mitochondria: further evidence for the role of the dicarboxylate and 2-oxoglutarate carriers in mitochondrial glutathione transport. Arch. Biochem. Biophys. 373, 193–202 (2000).
[Article](https://doi.org/10.1006%2Fabbi.1999.1527)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10620338)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXosVar)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Enrichment%20and%20functional%20reconstitution%20of%20glutathione%20transport%20activity%20from%20rabbit%20kidney%20mitochondria%3A%20further%20evidence%20for%20the%20role%20of%20the%20dicarboxylate%20and%202-oxoglutarate%20carriers%20in%20mitochondrial%20glutathione%20transport&journal=Arch.%20Biochem.%20Biophys.&doi=10.1006%2Fabbi.1999.1527&volume=373&pages=193-202&publication_year=2000&author=Chen%2CZ&author=Putt%2CDA&author=Lash%2CLH) 
  1. Seiler, A. et al. Glutathione peroxidase 4 senses and translates oxidative stress into 12/15-lipoxygenase dependent- and AIF-mediated cell death. Cell Metab. 8, 237–248 (2008).
[Article](https://doi.org/10.1016%2Fj.cmet.2008.07.005)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18762024)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXhtFeju77K)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Glutathione%20peroxidase%204%20senses%20and%20translates%20oxidative%20stress%20into%2012%2F15-lipoxygenase%20dependent-%20and%20AIF-mediated%20cell%20death&journal=Cell%20Metab.&doi=10.1016%2Fj.cmet.2008.07.005&volume=8&pages=237-248&publication_year=2008&author=Seiler%2CA) 
  1. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).
[Article](https://doi.org/10.1038%2Fs41586-019-1707-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31634899)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitFGns7vN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=FSP1%20is%20a%20glutathione-independent%20ferroptosis%20suppressor&journal=Nature&doi=10.1038%2Fs41586-019-1707-0&volume=575&pages=693-698&publication_year=2019&author=Doll%2CS) 
  1. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).
[Article](https://doi.org/10.1038%2Fs41586-019-1705-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31634900)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883167)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitFGns7vM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20CoQ%20oxidoreductase%20FSP1%20acts%20parallel%20to%20GPX4%20to%20inhibit%20ferroptosis&journal=Nature&doi=10.1038%2Fs41586-019-1705-2&volume=575&pages=688-692&publication_year=2019&author=Bersuker%2CK) 
  1. Liang, D. et al. Ferroptosis surveillance independent of GPX4 and differentially regulated by sex hormones. Cell 186, 2748–2764 e22 (2023).
[Article](https://doi.org/10.1016%2Fj.cell.2023.05.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37267948)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10330611)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhtFCnsbvM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20surveillance%20independent%20of%20GPX4%20and%20differentially%20regulated%20by%20sex%20hormones&journal=Cell&doi=10.1016%2Fj.cell.2023.05.003&volume=186&pages=2748-2764%20e22&publication_year=2023&author=Liang%2CD) 
  1. Cronin, S. J. F. et al. The metabolite BH4 controls T cell proliferation in autoimmunity and cancer. Nature 563, 564–568 (2018).
[Article](https://doi.org/10.1038%2Fs41586-018-0701-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30405245)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6438708)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXitFejsLfJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20metabolite%20BH4%20controls%20T%20cell%20proliferation%20in%20autoimmunity%20and%20cancer&journal=Nature&doi=10.1038%2Fs41586-018-0701-2&volume=563&pages=564-568&publication_year=2018&author=Cronin%2CSJF) 
  1. Sun, X. et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173–184 (2016).
[Article](https://doi.org/10.1002%2Fhep.28251)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26403645)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXitV2jtrzK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Activation%20of%20the%20p62-Keap1-NRF2%20pathway%20protects%20against%20ferroptosis%20in%20hepatocellular%20carcinoma%20cells&journal=Hepatology&doi=10.1002%2Fhep.28251&volume=63&pages=173-184&publication_year=2016&author=Sun%2CX) 
  1. Liu, Y. et al. The diversified role of mitochondria in ferroptosis in cancer. Cell Death Dis. 14, 519 (2023).
[Article](https://doi.org/10.1038%2Fs41419-023-06045-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37580393)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10425449)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslalt7%2FI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20diversified%20role%20of%20mitochondria%20in%20ferroptosis%20in%20cancer&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-023-06045-y&volume=14&publication_year=2023&author=Liu%2CY) 
  1. Quinlan, C. L. et al. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 287, 27255–27264 (2012).
[Article](https://doi.org/10.1074%2Fjbc.M112.374629)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22689576)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411067)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhtFaqtrfF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20complex%20II%20can%20generate%20reactive%20oxygen%20species%20at%20high%20rates%20in%20both%20the%20forward%20and%20reverse%20reactions&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.M112.374629&volume=287&pages=27255-27264&publication_year=2012&author=Quinlan%2CCL) 
  1. Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019).
[Article](https://doi.org/10.1038%2Fs41467-019-09277-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30962421)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6453886)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20GPX4-dependent%20cancer%20cell%20state%20underlies%20the%20clear-cell%20morphology%20and%20confers%20sensitivity%20to%20ferroptosis&journal=Nat.%20Commun.&doi=10.1038%2Fs41467-019-09277-9&volume=10&publication_year=2019&author=Zou%2CY) 
  1. Schnurr, K., Borchert, A. & Kuhn, H. Inverse regulation of lipid-peroxidizing and hydroperoxyl lipid-reducing enzymes by interleukins 4 and 13. FASEB J. 13, 143–154 (1999).
[Article](https://doi.org/10.1096%2Ffasebj.13.1.143)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9872939)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1MXlt1yntQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inverse%20regulation%20of%20lipid-peroxidizing%20and%20hydroperoxyl%20lipid-reducing%20enzymes%20by%20interleukins%204%20and%2013&journal=FASEB%20J.&doi=10.1096%2Ffasebj.13.1.143&volume=13&pages=143-154&publication_year=1999&author=Schnurr%2CK&author=Borchert%2CA&author=Kuhn%2CH) 
  1. Lee, J., You, J. H., Kim, M. S. & Roh, J. L. Epigenetic reprogramming of epithelial-mesenchymal transition promotes ferroptosis of head and neck cancer. Redox Biol. 37, 101697 (2020).
[Article](https://doi.org/10.1016%2Fj.redox.2020.101697)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32896720)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7484553)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhvVSls7%2FP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Epigenetic%20reprogramming%20of%20epithelial-mesenchymal%20transition%20promotes%20ferroptosis%20of%20head%20and%20neck%20cancer&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2020.101697&volume=37&publication_year=2020&author=Lee%2CJ&author=You%2CJH&author=Kim%2CMS&author=Roh%2CJL) 
  1. Pastushenko, I. et al. Identification of the tumour transition states occurring during EMT. Nature 556, 463–468 (2018).
[Article](https://doi.org/10.1038%2Fs41586-018-0040-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29670281)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXosVCgu74%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identification%20of%20the%20tumour%20transition%20states%20occurring%20during%20EMT&journal=Nature&doi=10.1038%2Fs41586-018-0040-3&volume=556&pages=463-468&publication_year=2018&author=Pastushenko%2CI) 
  1. Na, T. Y., Schecterson, L., Mendonsa, A. M. & Gumbiner, B. M. The functional activity of E-cadherin controls tumor cell metastasis at multiple steps. Proc. Natl. Acad. Sci. USA 117, 5931–5937 (2020).
[Article](https://doi.org/10.1073%2Fpnas.1918167117)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32127478)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7084067)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXlt1Wks7c%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20functional%20activity%20of%20E-cadherin%20controls%20tumor%20cell%20metastasis%20at%20multiple%20steps&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1918167117&volume=117&pages=5931-5937&publication_year=2020&author=Na%2CTY&author=Schecterson%2CL&author=Mendonsa%2CAM&author=Gumbiner%2CBM) 
  1. Lu, H. et al. Reflux conditions induce E-cadherin cleavage and EMT via APE1 redox function in oesophageal adenocarcinoma. Gut 73, 47–62 (2023).
[Article](https://doi.org/10.1136%2Fgutjnl-2023-329455)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37734913)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Reflux%20conditions%20induce%20E-cadherin%20cleavage%20and%20EMT%20via%20APE1%20redox%20function%20in%20oesophageal%20adenocarcinoma&journal=Gut&doi=10.1136%2Fgutjnl-2023-329455&volume=73&pages=47-62&publication_year=2023&author=Lu%2CH) 
  1. Wenz, C. et al. Cell-cell contacts protect against t-BuOOH-induced cellular damage and ferroptosis in vitro. Arch. Toxicol. 93, 1265–1279 (2019).
[Article](https://link.springer.com/doi/10.1007/s00204-019-02413-w)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30798349)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXmtlamt78%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cell-cell%20contacts%20protect%20against%20t-BuOOH-induced%20cellular%20damage%20and%20ferroptosis%20in%20vitro&journal=Arch.%20Toxicol.&doi=10.1007%2Fs00204-019-02413-w&volume=93&pages=1265-1279&publication_year=2019&author=Wenz%2CC) 
  1. Ren, Y. et al. Ferroptosis and EMT: key targets for combating cancer progression and therapy resistance. Cell Mol. Life Sci. 80, 263 (2023).
[Article](https://link.springer.com/doi/10.1007/s00018-023-04907-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37598126)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10439860)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslaktLfO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20and%20EMT%3A%20key%20targets%20for%20combating%20cancer%20progression%20and%20therapy%20resistance&journal=Cell%20Mol.%20Life%20Sci.&doi=10.1007%2Fs00018-023-04907-4&volume=80&publication_year=2023&author=Ren%2CY) 
  1. Wang, M. et al. Gambogenic acid induces ferroptosis in melanoma cells undergoing epithelial-to-mesenchymal transition. Toxicol. Appl Pharm. 401, 115110 (2020).
[Article](https://doi.org/10.1016%2Fj.taap.2020.115110)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXht1Cjs7jF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Gambogenic%20acid%20induces%20ferroptosis%20in%20melanoma%20cells%20undergoing%20epithelial-to-mesenchymal%20transition&journal=Toxicol.%20Appl%20Pharm.&doi=10.1016%2Fj.taap.2020.115110&volume=401&publication_year=2020&author=Wang%2CM) 
  1. Sun, L. et al. Lipid peroxidation, GSH depletion, and SLC7A11 inhibition are common causes of EMT and ferroptosis in A549 cells, but different in specific mechanisms. DNA Cell Biol. 40, 172–183 (2021).
[Article](https://doi.org/10.1089%2Fdna.2020.5730)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33351681)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXktlCqtbg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lipid%20peroxidation%2C%20GSH%20depletion%2C%20and%20SLC7A11%20inhibition%20are%20common%20causes%20of%20EMT%20and%20ferroptosis%20in%20A549%20cells%2C%20but%20different%20in%20specific%20mechanisms&journal=DNA%20Cell%20Biol.&doi=10.1089%2Fdna.2020.5730&volume=40&pages=172-183&publication_year=2021&author=Sun%2CL) 
  1. Cen, J. et al. Hsa_circ_0057105 modulates a balance of epithelial-mesenchymal transition and ferroptosis vulnerability in renal cell carcinoma. Clin. Transl. Med. 13, e1339 (2023).
[Article](https://doi.org/10.1002%2Fctm2.1339)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37496319)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10372385)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsFOitr7J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hsa_circ_0057105%20modulates%20a%20balance%20of%20epithelial-mesenchymal%20transition%20and%20ferroptosis%20vulnerability%20in%20renal%20cell%20carcinoma&journal=Clin.%20Transl.%20Med.&doi=10.1002%2Fctm2.1339&volume=13&publication_year=2023&author=Cen%2CJ) 
  1. Takaoka, Y. et al. Mitochondrial pyruvate carrier 1 expression controls cancer epithelial-mesenchymal transition and radioresistance. Cancer Sci. 110, 1331–1339 (2019).
[Article](https://doi.org/10.1111%2Fcas.13980)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30801869)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6447954)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXmsFCns7c%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20pyruvate%20carrier%201%20expression%20controls%20cancer%20epithelial-mesenchymal%20transition%20and%20radioresistance&journal=Cancer%20Sci.&doi=10.1111%2Fcas.13980&volume=110&pages=1331-1339&publication_year=2019&author=Takaoka%2CY) 
  1. Cui, J. et al. A novel KDM5A/MPC-1 signaling pathway promotes pancreatic cancer progression via redirecting mitochondrial pyruvate metabolism. Oncogene 39, 1140–1151 (2020).
[Article](https://doi.org/10.1038%2Fs41388-019-1051-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31641207)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitVSlt7%2FE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20novel%20KDM5A%2FMPC-1%20signaling%20pathway%20promotes%20pancreatic%20cancer%20progression%20via%20redirecting%20mitochondrial%20pyruvate%20metabolism&journal=Oncogene&doi=10.1038%2Fs41388-019-1051-8&volume=39&pages=1140-1151&publication_year=2020&author=Cui%2CJ) 
  1. You, J. H., Lee, J. & Roh, J. L. Mitochondrial pyruvate carrier 1 regulates ferroptosis in drug-tolerant persister head and neck cancer cells via epithelial-mesenchymal transition. Cancer Lett. 507, 40–54 (2021).
[Article](https://doi.org/10.1016%2Fj.canlet.2021.03.013)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33741422)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXntFOlsr4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20pyruvate%20carrier%201%20regulates%20ferroptosis%20in%20drug-tolerant%20persister%20head%20and%20neck%20cancer%20cells%20via%20epithelial-mesenchymal%20transition&journal=Cancer%20Lett.&doi=10.1016%2Fj.canlet.2021.03.013&volume=507&pages=40-54&publication_year=2021&author=You%2CJH&author=Lee%2CJ&author=Roh%2CJL) 
  1. De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat. Rev. Cancer 13, 97–110 (2013).
[Article](https://doi.org/10.1038%2Fnrc3447)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23344542)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulatory%20networks%20defining%20EMT%20during%20cancer%20initiation%20and%20progression&journal=Nat.%20Rev.%20Cancer&doi=10.1038%2Fnrc3447&volume=13&pages=97-110&publication_year=2013&author=Craene%2CB&author=Berx%2CG) 
  1. Wang, Y. et al. Histone demethylase KDM3B protects against ferroptosis by upregulating SLC7A11. FEBS Open Bio. 10, 637–643 (2020).
[Article](https://doi.org/10.1002%2F2211-5463.12823)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32107878)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7137800)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Histone%20demethylase%20KDM3B%20protects%20against%20ferroptosis%20by%20upregulating%20SLC7A11&journal=FEBS%20Open%20Bio.&doi=10.1002%2F2211-5463.12823&volume=10&pages=637-643&publication_year=2020&author=Wang%2CY) 
  1. Salvatori, I., Valle, C., Ferri, A. & Carri, M. T. SIRT3 and mitochondrial metabolism in neurodegenerative diseases. Neurochem. Int. 109, 184–192 (2017).
[Article](https://doi.org/10.1016%2Fj.neuint.2017.04.012)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28449871)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXntVarsbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=SIRT3%20and%20mitochondrial%20metabolism%20in%20neurodegenerative%20diseases&journal=Neurochem.%20Int.&doi=10.1016%2Fj.neuint.2017.04.012&volume=109&pages=184-192&publication_year=2017&author=Salvatori%2CI&author=Valle%2CC&author=Ferri%2CA&author=Carri%2CMT) 
  1. Liu, L. et al. SIRT3 inhibits gallbladder cancer by induction of AKT-dependent ferroptosis and blockade of epithelial-mesenchymal transition. Cancer Lett. 510, 93–104 (2021).
[Article](https://doi.org/10.1016%2Fj.canlet.2021.04.007)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33872694)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVCqtr3E)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=SIRT3%20inhibits%20gallbladder%20cancer%20by%20induction%20of%20AKT-dependent%20ferroptosis%20and%20blockade%20of%20epithelial-mesenchymal%20transition&journal=Cancer%20Lett.&doi=10.1016%2Fj.canlet.2021.04.007&volume=510&pages=93-104&publication_year=2021&author=Liu%2CL) 
  1. Zhang, H., Zhou, L., Davies, K. J. A. & Forman, H. J. Silencing Bach1 alters aging-related changes in the expression of Nrf2-regulated genes in primary human bronchial epithelial cells. Arch. Biochem. Biophys. 672, 108074 (2019).
[Article](https://doi.org/10.1016%2Fj.abb.2019.108074)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31422075)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhs1aiurfK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Silencing%20Bach1%20alters%20aging-related%20changes%20in%20the%20expression%20of%20Nrf2-regulated%20genes%20in%20primary%20human%20bronchial%20epithelial%20cells&journal=Arch.%20Biochem.%20Biophys.&doi=10.1016%2Fj.abb.2019.108074&volume=672&publication_year=2019&author=Zhang%2CH&author=Zhou%2CL&author=Davies%2CKJA&author=Forman%2CHJ) 
  1. Nishizawa, H. et al. Ferroptosis is controlled by the coordinated transcriptional regulation of glutathione and labile iron metabolism by the transcription factor BACH1. J. Biol. Chem. 295, 69–82 (2020).
[Article](https://doi.org/10.1074%2Fjbc.RA119.009548)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31740582)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXjsVCnurw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20is%20controlled%20by%20the%20coordinated%20transcriptional%20regulation%20of%20glutathione%20and%20labile%20iron%20metabolism%20by%20the%20transcription%20factor%20BACH1&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.RA119.009548&volume=295&pages=69-82&publication_year=2020&author=Nishizawa%2CH) 
  1. Sato, M. et al. BACH1 promotes pancreatic cancer metastasis by repressing epithelial genes and enhancing epithelial-mesenchymal transition. Cancer Res. 80, 1279–1292 (2020).
[Article](https://doi.org/10.1158%2F0008-5472.CAN-18-4099)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31919242)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtVSmurnK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=BACH1%20promotes%20pancreatic%20cancer%20metastasis%20by%20repressing%20epithelial%20genes%20and%20enhancing%20epithelial-mesenchymal%20transition&journal=Cancer%20Res.&doi=10.1158%2F0008-5472.CAN-18-4099&volume=80&pages=1279-1292&publication_year=2020&author=Sato%2CM) 
  1. Nishizawa, H., Yamanaka, M. & Igarashi, K. Ferroptosis: regulation by competition between NRF2 and BACH1 and propagation of the death signal. FEBS J. 290, 1688–1704 (2023).
[Article](https://doi.org/10.1111%2Ffebs.16382)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35107212)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xkt1art70%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20regulation%20by%20competition%20between%20NRF2%20and%20BACH1%20and%20propagation%20of%20the%20death%20signal&journal=FEBS%20J.&doi=10.1111%2Ffebs.16382&volume=290&pages=1688-1704&publication_year=2023&author=Nishizawa%2CH&author=Yamanaka%2CM&author=Igarashi%2CK) 
  1. Chen, P. et al. Combinative treatment of beta-elemene and cetuximab is sensitive to KRAS mutant colorectal cancer cells by inducing ferroptosis and inhibiting epithelial-mesenchymal transformation. Theranostics 10, 5107–5119 (2020).
[Article](https://doi.org/10.7150%2Fthno.44705)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32308771)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163451)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhvVCls7zK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Combinative%20treatment%20of%20beta-elemene%20and%20cetuximab%20is%20sensitive%20to%20KRAS%20mutant%20colorectal%20cancer%20cells%20by%20inducing%20ferroptosis%20and%20inhibiting%20epithelial-mesenchymal%20transformation&journal=Theranostics&doi=10.7150%2Fthno.44705&volume=10&pages=5107-5119&publication_year=2020&author=Chen%2CP) 
  1. Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021).
[Article](https://doi.org/10.3322%2Fcaac.21660)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33538338)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Global%20cancer%20statistics%202020%3A%20GLOBOCAN%20estimates%20of%20incidence%20and%20mortality%20worldwide%20for%2036%20cancers%20in%20185%20countries&journal=CA%20Cancer%20J.%20Clin.&doi=10.3322%2Fcaac.21660&volume=71&pages=209-249&publication_year=2021&author=Sung%2CH) 
  1. Siegel, R. L., Miller, K. D., Wagle, N. S. & Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 73, 17–48 (2023).
[Article](https://doi.org/10.3322%2Fcaac.21763)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36633525)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cancer%20statistics%2C%202023&journal=CA%20Cancer%20J.%20Clin.&doi=10.3322%2Fcaac.21763&volume=73&pages=17-48&publication_year=2023&author=Siegel%2CRL&author=Miller%2CKD&author=Wagle%2CNS&author=Jemal%2CA) 
  1. Schmitt, A. M. & Chang, H. Y. Long noncoding RNAs in cancer pathways. Cancer Cell 29, 452–463 (2016).
[Article](https://doi.org/10.1016%2Fj.ccell.2016.03.010)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27070700)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4831138)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XmtVSntrk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Long%20noncoding%20RNAs%20in%20cancer%20pathways&journal=Cancer%20Cell&doi=10.1016%2Fj.ccell.2016.03.010&volume=29&pages=452-463&publication_year=2016&author=Schmitt%2CAM&author=Chang%2CHY) 
  1. Xi, S. et al. Downregulation of N6-methyladenosine-modified LINC00641 promotes EMT, but provides a ferroptotic vulnerability in lung cancer. Cell Death Dis. 14, 359 (2023).
[Article](https://doi.org/10.1038%2Fs41419-023-05880-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37311754)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10264399)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht1Gjs73I)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Downregulation%20of%20N6-methyladenosine-modified%20LINC00641%20promotes%20EMT%2C%20but%20provides%20a%20ferroptotic%20vulnerability%20in%20lung%20cancer&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-023-05880-3&volume=14&publication_year=2023&author=Xi%2CS) 
  1. Guan, D. et al. The DpdtbA induced EMT inhibition in gastric cancer cell lines was through ferritinophagy-mediated activation of p53 and PHD2/hif-1alpha pathway. J. Inorg. Biochem. 218, 111413 (2021).
[Article](https://doi.org/10.1016%2Fj.jinorgbio.2021.111413)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33713969)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXmsVGjtbk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20DpdtbA%20induced%20EMT%20inhibition%20in%20gastric%20cancer%20cell%20lines%20was%20through%20ferritinophagy-mediated%20activation%20of%20p53%20and%20PHD2%2Fhif-1alpha%20pathway&journal=J.%20Inorg.%20Biochem.&doi=10.1016%2Fj.jinorgbio.2021.111413&volume=218&publication_year=2021&author=Guan%2CD) 
  1. Wang, S. et al. Upregulation of ARNTL2 is associated with poor survival and immune infiltration in clear cell renal cell carcinoma. Cancer Cell Int. 21, 341 (2021).
[Article](https://link.springer.com/doi/10.1186/s12935-021-02046-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34217271)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8255002)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Upregulation%20of%20ARNTL2%20is%20associated%20with%20poor%20survival%20and%20immune%20infiltration%20in%20clear%20cell%20renal%20cell%20carcinoma&journal=Cancer%20Cell%20Int.&doi=10.1186%2Fs12935-021-02046-z&volume=21&publication_year=2021&author=Wang%2CS) 
  1. Wang, X. et al. ARNTL2 is a prognostic biomarker and correlates with immune cell infiltration in triple-negative breast cancer. Pharmacogenomics Pers. Med. 14, 1425–1440 (2021).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XpslSmsrs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ARNTL2%20is%20a%20prognostic%20biomarker%20and%20correlates%20with%20immune%20cell%20infiltration%20in%20triple-negative%20breast%20cancer&journal=Pharmacogenomics%20Pers.%20Med.&volume=14&pages=1425-1440&publication_year=2021&author=Wang%2CX) 
  1. Zhang, H. et al. ARNTL2 is an indicator of poor prognosis, promotes epithelial-to-mesenchymal transition and inhibits ferroptosis in lung adenocarcinoma. Transl. Oncol. 26, 101562 (2022).
[Article](https://doi.org/10.1016%2Fj.tranon.2022.101562)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36228410)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563212)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xis1Cit7rF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ARNTL2%20is%20an%20indicator%20of%20poor%20prognosis%2C%20promotes%20epithelial-to-mesenchymal%20transition%20and%20inhibits%20ferroptosis%20in%20lung%20adenocarcinoma&journal=Transl.%20Oncol.&doi=10.1016%2Fj.tranon.2022.101562&volume=26&publication_year=2022&author=Zhang%2CH) 
  1. Kuroki, L. & Guntupalli, S. R. Treatment of epithelial ovarian cancer. BMJ 371, m3773 (2020).
[Article](https://doi.org/10.1136%2Fbmj.m3773)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33168565)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Treatment%20of%20epithelial%20ovarian%20cancer&journal=BMJ&doi=10.1136%2Fbmj.m3773&volume=371&publication_year=2020&author=Kuroki%2CL&author=Guntupalli%2CSR) 
  1. Liu, Y. et al. Agrimonolide inhibits cancer progression and induces ferroptosis and apoptosis by targeting SCD1 in ovarian cancer cells. Phytomedicine 101, 154102 (2022).
[Article](https://doi.org/10.1016%2Fj.phymed.2022.154102)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35526323)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhvVaktrjE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Agrimonolide%20inhibits%20cancer%20progression%20and%20induces%20ferroptosis%20and%20apoptosis%20by%20targeting%20SCD1%20in%20ovarian%20cancer%20cells&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2022.154102&volume=101&publication_year=2022&author=Liu%2CY) 
  1. Wang, H. et al. Crystal structure of human stearoyl-coenzyme A desaturase in complex with substrate. Nat. Struct. Mol. Biol. 22, 581–585 (2015).
[Article](https://doi.org/10.1038%2Fnsmb.3049)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26098317)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtlKntr7J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Crystal%20structure%20of%20human%20stearoyl-coenzyme%20A%20desaturase%20in%20complex%20with%20substrate&journal=Nat.%20Struct.%20Mol.%20Biol.&doi=10.1038%2Fnsmb.3049&volume=22&pages=581-585&publication_year=2015&author=Wang%2CH) 
  1. Bohnsack, M. T. & Sloan, K. E. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell Mol. Life Sci. 75, 241–260 (2018).
[Article](https://link.springer.com/doi/10.1007/s00018-017-2598-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28752201)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXht1ekt7fK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20mitochondrial%20epitranscriptome%3A%20the%20roles%20of%20RNA%20modifications%20in%20mitochondrial%20translation%20and%20human%20disease&journal=Cell%20Mol.%20Life%20Sci.&doi=10.1007%2Fs00018-017-2598-6&volume=75&pages=241-260&publication_year=2018&author=Bohnsack%2CMT&author=Sloan%2CKE) 
  1. Delaunay, S. & Frye, M. RNA modifications regulating cell fate in cancer. Nat. Cell Biol. 21, 552–559 (2019).
[Article](https://doi.org/10.1038%2Fs41556-019-0319-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31048770)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXptFSrsb4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=RNA%20modifications%20regulating%20cell%20fate%20in%20cancer&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fs41556-019-0319-0&volume=21&pages=552-559&publication_year=2019&author=Delaunay%2CS&author=Frye%2CM) 
  1. Shi, Z. et al. Mettl17, a regulator of mitochondrial ribosomal RNA modifications, is required for the translation of mitochondrial coding genes. FASEB J. 33, 13040–13050 (2019).
[Article](https://doi.org/10.1096%2Ffj.201901331R)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31487196)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitlCksrzE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mettl17%2C%20a%20regulator%20of%20mitochondrial%20ribosomal%20RNA%20modifications%2C%20is%20required%20for%20the%20translation%20of%20mitochondrial%20coding%20genes&journal=FASEB%20J.&doi=10.1096%2Ffj.201901331R&volume=33&pages=13040-13050&publication_year=2019&author=Shi%2CZ) 
  1. Li, H. et al. METTL17 coordinates ferroptosis and tumorigenesis by regulating mitochondrial translation in colorectal cancer. Redox Biol. 71, 103087 (2024).
[Article](https://doi.org/10.1016%2Fj.redox.2024.103087)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38377789)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10884776)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXktV2jtb8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=METTL17%20coordinates%20ferroptosis%20and%20tumorigenesis%20by%20regulating%20mitochondrial%20translation%20in%20colorectal%20cancer&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2024.103087&volume=71&publication_year=2024&author=Li%2CH) 
  1. Wei, R. et al. Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J. Biol. Sci. 17, 2703–2717 (2021).
[Article](https://doi.org/10.7150%2Fijbs.59404)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34345202)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8326123)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhvFCisbfM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Tagitinin%20C%20induces%20ferroptosis%20through%20PERK-Nrf2-HO-1%20signaling%20pathway%20in%20colorectal%20cancer%20cells&journal=Int%20J.%20Biol.%20Sci.&doi=10.7150%2Fijbs.59404&volume=17&pages=2703-2717&publication_year=2021&author=Wei%2CR) 
  1. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 72, 7–33 (2022).
[Article](https://doi.org/10.3322%2Fcaac.21708)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35020204)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cancer%20statistics%2C%202022&journal=CA%20Cancer%20J.%20Clin.&doi=10.3322%2Fcaac.21708&volume=72&pages=7-33&publication_year=2022&author=Siegel%2CRL&author=Miller%2CKD&author=Fuchs%2CHE&author=Jemal%2CA) 
  1. Makker, V. et al. Endometrial cancer. Nat. Rev. Dis. Prim. 7, 88 (2021).
[Article](https://doi.org/10.1038%2Fs41572-021-00324-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34887451)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Endometrial%20cancer&journal=Nat.%20Rev.%20Dis.%20Prim.&doi=10.1038%2Fs41572-021-00324-8&volume=7&publication_year=2021&author=Makker%2CV) 
  1. Miao, X. & Zhang, N. Role of RBM3 in the regulation of cell proliferation in hepatocellular carcinoma. Exp. Mol. Pathol. 117, 104546 (2020).
[Article](https://doi.org/10.1016%2Fj.yexmp.2020.104546)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32976820)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitV2lsbnM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20RBM3%20in%20the%20regulation%20of%20cell%20proliferation%20in%20hepatocellular%20carcinoma&journal=Exp.%20Mol.%20Pathol.&doi=10.1016%2Fj.yexmp.2020.104546&volume=117&publication_year=2020&author=Miao%2CX&author=Zhang%2CN) 
  1. Melling, N. et al. Prevalence and clinical significance of RBM3 immunostaining in non-small cell lung cancers. J. Cancer Res. Clin. Oncol. 145, 873–879 (2019).
[Article](https://link.springer.com/doi/10.1007/s00432-019-02850-1)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30758670)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXotVKjsL8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Prevalence%20and%20clinical%20significance%20of%20RBM3%20immunostaining%20in%20non-small%20cell%20lung%20cancers&journal=J.%20Cancer%20Res.%20Clin.%20Oncol.&doi=10.1007%2Fs00432-019-02850-1&volume=145&pages=873-879&publication_year=2019&author=Melling%2CN) 
  1. Wang, Z. et al. Sodium butyrate induces ferroptosis in endometrial cancer cells via the RBM3/SLC7A11 axis. Apoptosis 28, 1168–1183 (2023).
[Article](https://link.springer.com/doi/10.1007/s10495-023-01850-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37170022)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXpvFalt7k%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Sodium%20butyrate%20induces%20ferroptosis%20in%20endometrial%20cancer%20cells%20via%20the%20RBM3%2FSLC7A11%20axis&journal=Apoptosis&doi=10.1007%2Fs10495-023-01850-4&volume=28&pages=1168-1183&publication_year=2023&author=Wang%2CZ) 
  1. Smyth, E. C. et al. Gastric cancer. Lancet 396, 635–648 (2020).
[Article](https://doi.org/10.1016%2FS0140-6736%2820%2931288-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32861308)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhslWjtLbJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Gastric%20cancer&journal=Lancet&doi=10.1016%2FS0140-6736%2820%2931288-5&volume=396&pages=635-648&publication_year=2020&author=Smyth%2CEC) 
  1. Saha, G., Roy, S., Basu, M. & Ghosh, M. K. USP7 - a crucial regulator of cancer hallmarks. Biochim. Biophys. Acta Rev. Cancer 1878, 188903 (2023).
[Article](https://doi.org/10.1016%2Fj.bbcan.2023.188903)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37127084)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXpsV2nsro%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=USP7%20-%20a%20crucial%20regulator%20of%20cancer%20hallmarks&journal=Biochim.%20Biophys.%20Acta%20Rev.%20Cancer&doi=10.1016%2Fj.bbcan.2023.188903&volume=1878&publication_year=2023&author=Saha%2CG&author=Roy%2CS&author=Basu%2CM&author=Ghosh%2CMK) 
  1. Guan, X. et al. Blocking Ubiquitin-Specific Protease 7 Induces Ferroptosis in Gastric Cancer via Targeting Stearoyl-CoA desaturase. Adv. Sci. 11, e2307899 (2024).
[Article](https://doi.org/10.1002%2Fadvs.202307899)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Blocking%20Ubiquitin-Specific%20Protease%207%20Induces%20Ferroptosis%20in%20Gastric%20Cancer%20via%20Targeting%20Stearoyl-CoA%20desaturase&journal=Adv.%20Sci.&doi=10.1002%2Fadvs.202307899&volume=11&publication_year=2024&author=Guan%2CX) 
  1. Whiteley, A. E., Price, T. T., Cantelli, G. & Sipkins, D. A. Leukaemia: a model metastatic disease. Nat. Rev. Cancer 21, 461–475 (2021).
[Article](https://doi.org/10.1038%2Fs41568-021-00355-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33953370)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8722462)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVCrsbzN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Leukaemia%3A%20a%20model%20metastatic%20disease&journal=Nat.%20Rev.%20Cancer&doi=10.1038%2Fs41568-021-00355-z&volume=21&pages=461-475&publication_year=2021&author=Whiteley%2CAE&author=Price%2CTT&author=Cantelli%2CG&author=Sipkins%2CDA) 
  1. Du, J. et al. DHA inhibits proliferation and induces ferroptosis of leukemia cells through autophagy dependent degradation of ferritin. Free Radic. Biol. Med. 131, 356–369 (2019).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2018.12.011)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30557609)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhslCrsw%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=DHA%20inhibits%20proliferation%20and%20induces%20ferroptosis%20of%20leukemia%20cells%20through%20autophagy%20dependent%20degradation%20of%20ferritin&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2018.12.011&volume=131&pages=356-369&publication_year=2019&author=Du%2CJ) 
  1. Jiang, J. et al. Let‑7d inhibits colorectal cancer cell proliferation through the CST1/p65 pathway. Int J. Oncol. 53, 781–790 (2018).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29845224)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhvFCqsrg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Let%E2%80%917d%20inhibits%20colorectal%20cancer%20cell%20proliferation%20through%20the%20CST1%2Fp65%20pathway&journal=Int%20J.%20Oncol.&volume=53&pages=781-790&publication_year=2018&author=Jiang%2CJ) 
  1. Li, D. et al. CST1 inhibits ferroptosis and promotes gastric cancer metastasis by regulating GPX4 protein stability via OTUB1. Oncogene 42, 83–98 (2023).
[Article](https://doi.org/10.1038%2Fs41388-022-02537-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36369321)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XivVKmsLrL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=CST1%20inhibits%20ferroptosis%20and%20promotes%20gastric%20cancer%20metastasis%20by%20regulating%20GPX4%20protein%20stability%20via%20OTUB1&journal=Oncogene&doi=10.1038%2Fs41388-022-02537-x&volume=42&pages=83-98&publication_year=2023&author=Li%2CD) 
  1. Gu, J. et al. Astragalus mongholicus Bunge-Curcuma aromatica Salisb. suppresses growth and metastasis of colorectal cancer cells by inhibiting M2 macrophage polarization via a Sp1/ZFAS1/miR-153-3p/CCR5 regulatory axis. Cell Biol. Toxicol. 38, 679–697 (2022).
[Article](https://link.springer.com/doi/10.1007/s10565-021-09679-w)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35072892)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XntVSnurk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Astragalus%20mongholicus%20Bunge-Curcuma%20aromatica%20Salisb.%20suppresses%20growth%20and%20metastasis%20of%20colorectal%20cancer%20cells%20by%20inhibiting%20M2%20macrophage%20polarization%20via%20a%20Sp1%2FZFAS1%2FmiR-153-3p%2FCCR5%20regulatory%20axis&journal=Cell%20Biol.%20Toxicol.&doi=10.1007%2Fs10565-021-09679-w&volume=38&pages=679-697&publication_year=2022&author=Gu%2CJ) 
  1. Yi, C. et al. Ferroptosis-dependent breast cancer cell-derived exosomes inhibit migration and invasion of breast cancer cells by suppressing M2 macrophage polarization. PeerJ 11, e15060 (2023).
[Article](https://doi.org/10.7717%2Fpeerj.15060)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36949762)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10026718)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis-dependent%20breast%20cancer%20cell-derived%20exosomes%20inhibit%20migration%20and%20invasion%20of%20breast%20cancer%20cells%20by%20suppressing%20M2%20macrophage%20polarization&journal=PeerJ&doi=10.7717%2Fpeerj.15060&volume=11&publication_year=2023&author=Yi%2CC) 
  1. Chen, S., Zhou, L. & Wang, Y. ALKBH5-mediated m(6)A demethylation of lncRNA PVT1 plays an oncogenic role in osteosarcoma. Cancer Cell Int. 20, 34 (2020).
[Article](https://link.springer.com/doi/10.1186/s12935-020-1105-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32021563)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6993345)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXkvVWkuro%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ALKBH5-mediated%20m%286%29A%20demethylation%20of%20lncRNA%20PVT1%20plays%20an%20oncogenic%20role%20in%20osteosarcoma&journal=Cancer%20Cell%20Int.&doi=10.1186%2Fs12935-020-1105-6&volume=20&publication_year=2020&author=Chen%2CS&author=Zhou%2CL&author=Wang%2CY) 
  1. Li, Q. et al. WTAP facilitates progression of endometrial cancer via CAV-1/NF-kappaB axis. Cell Biol. Int. 45, 1269–1277 (2021).
[Article](https://doi.org/10.1002%2Fcbin.11570)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33559954)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhvVaksrnL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=WTAP%20facilitates%20progression%20of%20endometrial%20cancer%20via%20CAV-1%2FNF-kappaB%20axis&journal=Cell%20Biol.%20Int.&doi=10.1002%2Fcbin.11570&volume=45&pages=1269-1277&publication_year=2021&author=Li%2CQ) 
  1. Wang, C. Q. et al. Upregulated WTAP expression appears to both promote breast cancer growth and inhibit lymph node metastasis. Sci. Rep. 12, 1023 (2022).
[Article](https://doi.org/10.1038%2Fs41598-022-05035-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35046505)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8770795)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xhs1CntLk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Upregulated%20WTAP%20expression%20appears%20to%20both%20promote%20breast%20cancer%20growth%20and%20inhibit%20lymph%20node%20metastasis&journal=Sci.%20Rep.&doi=10.1038%2Fs41598-022-05035-y&volume=12&publication_year=2022&author=Wang%2CCQ) 
  1. Liu, J. et al. NUPR1 is a critical repressor of ferroptosis. Nat. Commun. 12, 647 (2021).
[Article](https://doi.org/10.1038%2Fs41467-021-20904-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33510144)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7843652)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXivVWitb4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=NUPR1%20is%20a%20critical%20repressor%20of%20ferroptosis&journal=Nat.%20Commun.&doi=10.1038%2Fs41467-021-20904-2&volume=12&publication_year=2021&author=Liu%2CJ) 
  1. Tan, M. et al. WTAP mediates NUPR1 regulation of LCN2 through m(6)A modification to influence ferroptosis, thereby promoting breast cancer proliferation, migration and invasion. Biochem. Genet. 62, 876–891 (2024).
[Article](https://link.springer.com/doi/10.1007/s10528-023-10423-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37477758)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsFaht7vI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=WTAP%20mediates%20NUPR1%20regulation%20of%20LCN2%20through%20m%286%29A%20modification%20to%20influence%20ferroptosis%2C%20thereby%20promoting%20breast%20cancer%20proliferation%2C%20migration%20and%20invasion&journal=Biochem.%20Genet.&doi=10.1007%2Fs10528-023-10423-8&volume=62&pages=876-891&publication_year=2024&author=Tan%2CM) 
  1. Faisham, W. I. et al. Prognostic factors and survival rate of osteosarcoma: a single-institution study. Asia Pac. J. Clin. Oncol. 13, e104–e110 (2017).
[Article](https://doi.org/10.1111%2Fajco.12346)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25870979)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Prognostic%20factors%20and%20survival%20rate%20of%20osteosarcoma%3A%20a%20single-institution%20study&journal=Asia%20Pac.%20J.%20Clin.%20Oncol.&doi=10.1111%2Fajco.12346&volume=13&pages=e104-e110&publication_year=2017&author=Faisham%2CWI) 
  1. Jiang, M. et al. Exosome-mediated miR-144-3p promotes ferroptosis to inhibit osteosarcoma proliferation, migration, and invasion through regulating ZEB1. Mol. Cancer 22, 113 (2023).
[Article](https://link.springer.com/doi/10.1186/s12943-023-01804-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37461104)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10351131)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsFait7bM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Exosome-mediated%20miR-144-3p%20promotes%20ferroptosis%20to%20inhibit%20osteosarcoma%20proliferation%2C%20migration%2C%20and%20invasion%20through%20regulating%20ZEB1&journal=Mol.%20Cancer&doi=10.1186%2Fs12943-023-01804-z&volume=22&publication_year=2023&author=Jiang%2CM) 
  1. Wang, J. et al. Eight proteins play critical roles in RCC with bone metastasis via mitochondrial dysfunction. Clin. Exp. Metastasis 32, 605–622 (2015).
[Article](https://link.springer.com/doi/10.1007/s10585-015-9731-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26115722)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4503866)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFChsLzE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Eight%20proteins%20play%20critical%20roles%20in%20RCC%20with%20bone%20metastasis%20via%20mitochondrial%20dysfunction&journal=Clin.%20Exp.%20Metastasis&doi=10.1007%2Fs10585-015-9731-4&volume=32&pages=605-622&publication_year=2015&author=Wang%2CJ) 
  1. Rane, M. J., Zhao, Y. & Cai, L. Krupsilonppel-like factors (KLFs) in renal physiology and disease. EBio Med. 40, 743–750 (2019).
[Google Scholar](http://scholar.google.com/scholar_lookup?&title=Krupsilonppel-like%20factors%20%28KLFs%29%20in%20renal%20physiology%20and%20disease&journal=EBio%20Med.&volume=40&pages=743-750&publication_year=2019&author=Rane%2CMJ&author=Zhao%2CY&author=Cai%2CL) 
  1. Lu, Y. et al. KLF2 inhibits cancer cell migration and invasion by regulating ferroptosis through GPX4 in clear cell renal cell carcinoma. Cancer Lett. 522, 1–13 (2021).
[Article](https://doi.org/10.1016%2Fj.canlet.2021.09.014)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34520818)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXitVantLjE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=KLF2%20inhibits%20cancer%20cell%20migration%20and%20invasion%20by%20regulating%20ferroptosis%20through%20GPX4%20in%20clear%20cell%20renal%20cell%20carcinoma&journal=Cancer%20Lett.&doi=10.1016%2Fj.canlet.2021.09.014&volume=522&pages=1-13&publication_year=2021&author=Lu%2CY) 
  1. Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).
[Article](https://doi.org/10.3322%2Fcaac.21654)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33433946)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cancer%20statistics%2C%202021&journal=CA%20Cancer%20J.%20Clin.&doi=10.3322%2Fcaac.21654&volume=71&pages=7-33&publication_year=2021&author=Siegel%2CRL&author=Miller%2CKD&author=Fuchs%2CHE&author=Jemal%2CA) 
  1. Chang, J. W. et al. An integrative model for alternative polyadenylation, IntMAP, delineates mTOR-modulated endoplasmic reticulum stress response. Nucleic Acids Res 46, 5996–6008 (2018).
[Article](https://doi.org/10.1093%2Fnar%2Fgky340)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29733382)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6158760)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXosVyqsrY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=An%20integrative%20model%20for%20alternative%20polyadenylation%2C%20IntMAP%2C%20delineates%20mTOR-modulated%20endoplasmic%20reticulum%20stress%20response&journal=Nucleic%20Acids%20Res&doi=10.1093%2Fnar%2Fgky340&volume=46&pages=5996-6008&publication_year=2018&author=Chang%2CJW) 
  1. Zhang, X. et al. CEBPG suppresses ferroptosis through transcriptional control of SLC7A11 in ovarian cancer. J. Transl. Med 21, 334 (2023).
[Article](https://link.springer.com/doi/10.1186/s12967-023-04136-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37210575)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10199564)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhtVKitbzE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=CEBPG%20suppresses%20ferroptosis%20through%20transcriptional%20control%20of%20SLC7A11%20in%20ovarian%20cancer&journal=J.%20Transl.%20Med&doi=10.1186%2Fs12967-023-04136-0&volume=21&publication_year=2023&author=Zhang%2CX) 
  1. Modest, D. P. et al. Outcome according to KRAS-, NRAS- and BRAF-mutation as well as KRAS mutation variants: pooled analysis of five randomized trials in metastatic colorectal cancer by the AIO colorectal cancer study group. Ann. Oncol. 27, 1746–1753 (2016).
[Article](https://doi.org/10.1093%2Fannonc%2Fmdw261)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27358379)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999563)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BC2s7ltVOisQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Outcome%20according%20to%20KRAS-%2C%20NRAS-%20and%20BRAF-mutation%20as%20well%20as%20KRAS%20mutation%20variants%3A%20pooled%20analysis%20of%20five%20randomized%20trials%20in%20metastatic%20colorectal%20cancer%20by%20the%20AIO%20colorectal%20cancer%20study%20group&journal=Ann.%20Oncol.&doi=10.1093%2Fannonc%2Fmdw261&volume=27&pages=1746-1753&publication_year=2016&author=Modest%2CDP) 
  1. Miao, Q. et al. Erianin inhibits the growth and metastasis through autophagy-dependent ferroptosis in KRAS(G13D) colorectal cancer. Free Radic. Biol. Med. 204, 301–312 (2023).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2023.05.008)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37217090)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhtV2iurvL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Erianin%20inhibits%20the%20growth%20and%20metastasis%20through%20autophagy-dependent%20ferroptosis%20in%20KRAS%28G13D%29%20colorectal%20cancer&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2023.05.008&volume=204&pages=301-312&publication_year=2023&author=Miao%2CQ) 
  1. Arden, K. C., Viars, C. S., Fu, K. & Rozen, R. Localization of short/branched chain acyl-CoA dehydrogenase (ACADSB) to human chromosome 10. Genomics 25, 743–745 (1995).
[Article](https://doi.org/10.1016%2F0888-7543%2895%2980023-F)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7759115)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2MXktFOqs70%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Localization%20of%20short%2Fbranched%20chain%20acyl-CoA%20dehydrogenase%20%28ACADSB%29%20to%20human%20chromosome%2010&journal=Genomics&doi=10.1016%2F0888-7543%2895%2980023-F&volume=25&pages=743-745&publication_year=1995&author=Arden%2CKC&author=Viars%2CCS&author=Fu%2CK&author=Rozen%2CR) 
  1. Lu, D. et al. ACADSB regulates ferroptosis and affects the migration, invasion, and proliferation of colorectal cancer cells. Cell Biol. Int. 44, 2334–2343 (2020).
[Article](https://doi.org/10.1002%2Fcbin.11443)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32776663)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitV2rsL7E)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ACADSB%20regulates%20ferroptosis%20and%20affects%20the%20migration%2C%20invasion%2C%20and%20proliferation%20of%20colorectal%20cancer%20cells&journal=Cell%20Biol.%20Int.&doi=10.1002%2Fcbin.11443&volume=44&pages=2334-2343&publication_year=2020&author=Lu%2CD) 
  1. Groot, V. P. et al. Patterns, Timing, and predictors of recurrence following pancreatectomy for pancreatic ductal adenocarcinoma. Ann. Surg. 267, 936–945 (2018).
[Article](https://doi.org/10.1097%2FSLA.0000000000002234)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28338509)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Patterns%2C%20Timing%2C%20and%20predictors%20of%20recurrence%20following%20pancreatectomy%20for%20pancreatic%20ductal%20adenocarcinoma&journal=Ann.%20Surg.&doi=10.1097%2FSLA.0000000000002234&volume=267&pages=936-945&publication_year=2018&author=Groot%2CVP) 
  1. Sancho, P., Barneda, D. & Heeschen, C. Hallmarks of cancer stem cell metabolism. Br. J. Cancer 114, 1305–1312 (2016).
[Article](https://doi.org/10.1038%2Fbjc.2016.152)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27219018)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4984474)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xos1Wnsrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hallmarks%20of%20cancer%20stem%20cell%20metabolism&journal=Br.%20J.%20Cancer&doi=10.1038%2Fbjc.2016.152&volume=114&pages=1305-1312&publication_year=2016&author=Sancho%2CP&author=Barneda%2CD&author=Heeschen%2CC) 
  1. Baughman, J. M. et al. Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476, 341–345 (2011).
[Article](https://doi.org/10.1038%2Fnature10234)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21685886)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3486726)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXnslSktLo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Integrative%20genomics%20identifies%20MCU%20as%20an%20essential%20component%20of%20the%20mitochondrial%20calcium%20uniporter&journal=Nature&doi=10.1038%2Fnature10234&volume=476&pages=341-345&publication_year=2011&author=Baughman%2CJM) 
  1. De Stefani, D., Rizzuto, R. & Pozzan, T. Enjoy the trip: calcium in mitochondria back and forth. Annu. Rev. Biochem. 85, 161–192 (2016).
[Article](https://doi.org/10.1146%2Fannurev-biochem-060614-034216)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27145841)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Enjoy%20the%20trip%3A%20calcium%20in%20mitochondria%20back%20and%20forth&journal=Annu.%20Rev.%20Biochem.&doi=10.1146%2Fannurev-biochem-060614-034216&volume=85&pages=161-192&publication_year=2016&author=Stefani%2CD&author=Rizzuto%2CR&author=Pozzan%2CT) 
  1. Pan, X. et al. The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat. Cell Biol. 15, 1464–1472 (2013).
[Article](https://doi.org/10.1038%2Fncb2868)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24212091)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3852190)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhslCntrbL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20physiological%20role%20of%20mitochondrial%20calcium%20revealed%20by%20mice%20lacking%20the%20mitochondrial%20calcium%20uniporter&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb2868&volume=15&pages=1464-1472&publication_year=2013&author=Pan%2CX) 
  1. Wang, X. et al. Mitochondrial calcium uniporter drives metastasis and confers a targetable cystine dependency in pancreatic cancer. Cancer Res. 82, 2254–2268 (2022).
[Article](https://doi.org/10.1158%2F0008-5472.CAN-21-3230)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35413105)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9203979)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XitVyqt7bM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20calcium%20uniporter%20drives%20metastasis%20and%20confers%20a%20targetable%20cystine%20dependency%20in%20pancreatic%20cancer&journal=Cancer%20Res.&doi=10.1158%2F0008-5472.CAN-21-3230&volume=82&pages=2254-2268&publication_year=2022&author=Wang%2CX) 
  1. Borhani, S., Borhani, R. & Kajdacsy-Balla, A. Artificial intelligence: a promising frontier in bladder cancer diagnosis and outcome prediction. Crit. Rev. Oncol. Hematol. 171, 103601 (2022).
[Article](https://doi.org/10.1016%2Fj.critrevonc.2022.103601)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35065220)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Artificial%20intelligence%3A%20a%20promising%20frontier%20in%20bladder%20cancer%20diagnosis%20and%20outcome%20prediction&journal=Crit.%20Rev.%20Oncol.%20Hematol.&doi=10.1016%2Fj.critrevonc.2022.103601&volume=171&publication_year=2022&author=Borhani%2CS&author=Borhani%2CR&author=Kajdacsy-Balla%2CA) 
  1. Patel, V. G., Oh, W. K. & Galsky, M. D. Treatment of muscle-invasive and advanced bladder cancer in 2020. CA Cancer J. Clin. 70, 404–423 (2020).
[Article](https://doi.org/10.3322%2Fcaac.21631)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32767764)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Treatment%20of%20muscle-invasive%20and%20advanced%20bladder%20cancer%20in%202020&journal=CA%20Cancer%20J.%20Clin.&doi=10.3322%2Fcaac.21631&volume=70&pages=404-423&publication_year=2020&author=Patel%2CVG&author=Oh%2CWK&author=Galsky%2CMD) 
  1. Lager, T. W. et al. Cell surface GRP78 and Dermcidin cooperate to regulate breast cancer cell migration through Wnt signaling. Oncogene 40, 4050–4059 (2021).
[Article](https://doi.org/10.1038%2Fs41388-021-01821-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33981001)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8197743)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVOksLzE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cell%20surface%20GRP78%20and%20Dermcidin%20cooperate%20to%20regulate%20breast%20cancer%20cell%20migration%20through%20Wnt%20signaling&journal=Oncogene&doi=10.1038%2Fs41388-021-01821-6&volume=40&pages=4050-4059&publication_year=2021&author=Lager%2CTW) 
  1. Samanta, S. et al. The hydroxyquinoline analogue YUM70 inhibits GRP78 to induce er stress-mediated apoptosis in pancreatic cancer. Cancer Res. 81, 1883–1895 (2021).
[Article](https://doi.org/10.1158%2F0008-5472.CAN-20-1540)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33531374)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8137563)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVKqtb%2FI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20hydroxyquinoline%20analogue%20YUM70%20inhibits%20GRP78%20to%20induce%20er%20stress-mediated%20apoptosis%20in%20pancreatic%20cancer&journal=Cancer%20Res.&doi=10.1158%2F0008-5472.CAN-20-1540&volume=81&pages=1883-1895&publication_year=2021&author=Samanta%2CS) 
  1. Kim, S. Y. et al. HSPA5 negatively regulates lysosomal activity through ubiquitination of MUL1 in head and neck cancer. Autophagy 14, 385–403 (2018).
[Article](https://doi.org/10.1080%2F15548627.2017.1414126)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29260979)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915028)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXjslOjurs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=HSPA5%20negatively%20regulates%20lysosomal%20activity%20through%20ubiquitination%20of%20MUL1%20in%20head%20and%20neck%20cancer&journal=Autophagy&doi=10.1080%2F15548627.2017.1414126&volume=14&pages=385-403&publication_year=2018&author=Kim%2CSY) 
  1. Wang, Q. et al. HSPA5 promotes the proliferation, metastasis and regulates ferroptosis of bladder cancer. Int. J. Mol. Sci. 24, 5144 (2023).
  1. Ketteler, J. & Klein, D. Caveolin-1, cancer and therapy resistance. Int. J. Cancer 143, 2092–2104 (2018).
[Article](https://doi.org/10.1002%2Fijc.31369)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29524224)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXmsVGqsb0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Caveolin-1%2C%20cancer%20and%20therapy%20resistance&journal=Int.%20J.%20Cancer&doi=10.1002%2Fijc.31369&volume=143&pages=2092-2104&publication_year=2018&author=Ketteler%2CJ&author=Klein%2CD) 
  1. Lu, T. et al. Caveolin-1 promotes cancer progression via inhibiting ferroptosis in head and neck squamous cell carcinoma. J. Oral. Pathol. Med. 51, 52–62 (2022).
[Article](https://doi.org/10.1111%2Fjop.13267)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34874578)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xot1OlsA%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Caveolin-1%20promotes%20cancer%20progression%20via%20inhibiting%20ferroptosis%20in%20head%20and%20neck%20squamous%20cell%20carcinoma&journal=J.%20Oral.%20Pathol.%20Med.&doi=10.1111%2Fjop.13267&volume=51&pages=52-62&publication_year=2022&author=Lu%2CT) 
  1. Florek, M. et al. Prominin-2 is a cholesterol-binding protein associated with apical and basolateral plasmalemmal protrusions in polarized epithelial cells and released into urine. Cell Tissue Res. 328, 31–47 (2007).
[Article](https://link.springer.com/doi/10.1007/s00441-006-0324-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17109118)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXivVShtbg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Prominin-2%20is%20a%20cholesterol-binding%20protein%20associated%20with%20apical%20and%20basolateral%20plasmalemmal%20protrusions%20in%20polarized%20epithelial%20cells%20and%20released%20into%20urine&journal=Cell%20Tissue%20Res.&doi=10.1007%2Fs00441-006-0324-z&volume=328&pages=31-47&publication_year=2007&author=Florek%2CM) 
  1. Dowland, S. N. et al. Prominin-2 prevents the formation of caveolae in normal and ovarian hyperstimulated pregnancy. Reprod. Sci. 25, 1231–1242 (2018).
[Article](https://doi.org/10.1177%2F1933719117737842)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29113580)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtlekt7rK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Prominin-2%20prevents%20the%20formation%20of%20caveolae%20in%20normal%20and%20ovarian%20hyperstimulated%20pregnancy&journal=Reprod.%20Sci.&doi=10.1177%2F1933719117737842&volume=25&pages=1231-1242&publication_year=2018&author=Dowland%2CSN) 
  1. Singh, R. D. et al. Prominin-2 expression increases protrusions, decreases caveolae and inhibits Cdc42 dependent fluid phase endocytosis. Biochem. Biophys. Res. Commun. 434, 466–472 (2013).
[Article](https://doi.org/10.1016%2Fj.bbrc.2013.03.097)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23583380)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3659420)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXmsleqsbo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Prominin-2%20expression%20increases%20protrusions%2C%20decreases%20caveolae%20and%20inhibits%20Cdc42%20dependent%20fluid%20phase%20endocytosis&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2013.03.097&volume=434&pages=466-472&publication_year=2013&author=Singh%2CRD) 
  1. Paris, J. et al. PROM2 overexpression induces metastatic potential through epithelial-to-mesenchymal transition and ferroptosis resistance in human cancers. Clin. Transl. Med. 14, e1632 (2024).
[Article](https://doi.org/10.1002%2Fctm2.1632)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38515278)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10958126)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXmslGjs78%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=PROM2%20overexpression%20induces%20metastatic%20potential%20through%20epithelial-to-mesenchymal%20transition%20and%20ferroptosis%20resistance%20in%20human%20cancers&journal=Clin.%20Transl.%20Med.&doi=10.1002%2Fctm2.1632&volume=14&publication_year=2024&author=Paris%2CJ) 
  1. Zhang, C. et al. Ferroptosis in cancer therapy: a novel approach to reversing drug resistance. Mol. Cancer 21, 47 (2022).
[Article](https://link.springer.com/doi/10.1186/s12943-022-01530-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35151318)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8840702)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20in%20cancer%20therapy%3A%20a%20novel%20approach%20to%20reversing%20drug%20resistance&journal=Mol.%20Cancer&doi=10.1186%2Fs12943-022-01530-y&volume=21&publication_year=2022&author=Zhang%2CC) 
  1. Chen, T. C. et al. AR ubiquitination induced by the curcumin analog suppresses growth of temozolomide-resistant glioblastoma through disrupting GPX4-Mediated redox homeostasis. Redox Biol. 30, 101413 (2020).
[Article](https://doi.org/10.1016%2Fj.redox.2019.101413)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31896509)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXptVyj)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=AR%20ubiquitination%20induced%20by%20the%20curcumin%20analog%20suppresses%20growth%20of%20temozolomide-resistant%20glioblastoma%20through%20disrupting%20GPX4-Mediated%20redox%20homeostasis&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2019.101413&volume=30&publication_year=2020&author=Chen%2CTC) 
  1. de Souza, I. et al. High levels of NRF2 sensitize temozolomide-resistant glioblastoma cells to ferroptosis via ABCC1/MRP1 upregulation. Cell Death Dis. 13, 591 (2022).
[Article](https://doi.org/10.1038%2Fs41419-022-05044-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35803910)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9270336)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=High%20levels%20of%20NRF2%20sensitize%20temozolomide-resistant%20glioblastoma%20cells%20to%20ferroptosis%20via%20ABCC1%2FMRP1%20upregulation&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-022-05044-9&volume=13&publication_year=2022&author=Souza%2CI) 
  1. Lou, J. S. et al. Ginkgetin derived from Ginkgo biloba leaves enhances the therapeutic effect of cisplatin via ferroptosis-mediated disruption of the Nrf2/HO-1 axis in EGFR wild-type non-small-cell lung cancer. Phytomedicine 80, 153370 (2021).
[Article](https://doi.org/10.1016%2Fj.phymed.2020.153370)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33113504)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitlWgur3E)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ginkgetin%20derived%20from%20Ginkgo%20biloba%20leaves%20enhances%20the%20therapeutic%20effect%20of%20cisplatin%20via%20ferroptosis-mediated%20disruption%20of%20the%20Nrf2%2FHO-1%20axis%20in%20EGFR%20wild-type%20non-small-cell%20lung%20cancer&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2020.153370&volume=80&publication_year=2021&author=Lou%2CJS) 
  1. Liang, Z. et al. Cisplatin synergizes with PRLX93936 to induce ferroptosis in non-small cell lung cancer cells. Biochem. Biophys. Res. Commun. 569, 79–85 (2021).
[Article](https://doi.org/10.1016%2Fj.bbrc.2021.06.088)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34237431)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhsVOrsrvP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cisplatin%20synergizes%20with%20PRLX93936%20to%20induce%20ferroptosis%20in%20non-small%20cell%20lung%20cancer%20cells&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2021.06.088&volume=569&pages=79-85&publication_year=2021&author=Liang%2CZ) 
  1. Cui, Z., Li, D., Zhao, J. & Chen, K. Falnidamol and cisplatin combinational treatment inhibits non-small cell lung cancer (NSCLC) by targeting DUSP26-mediated signal pathways. Free Radic. Biol. Med. 183, 106–124 (2022).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2022.03.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35278641)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XosVWlu7c%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Falnidamol%20and%20cisplatin%20combinational%20treatment%20inhibits%20non-small%20cell%20lung%20cancer%20%28NSCLC%29%20by%20targeting%20DUSP26-mediated%20signal%20pathways&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2022.03.003&volume=183&pages=106-124&publication_year=2022&author=Cui%2CZ&author=Li%2CD&author=Zhao%2CJ&author=Chen%2CK) 
  1. Gentile, D. et al. Surgical treatment of hepatocholangiocarcinoma: a systematic review. Liver Cancer 9, 15–27 (2020).
[Article](https://doi.org/10.1159%2F000503719)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32071906)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Surgical%20treatment%20of%20hepatocholangiocarcinoma%3A%20a%20systematic%20review&journal=Liver%20Cancer&doi=10.1159%2F000503719&volume=9&pages=15-27&publication_year=2020&author=Gentile%2CD) 
  1. Gigante, E. et al. Systemic treatments with tyrosine kinase inhibitor and platinum-based chemotherapy in patients with unresectable or metastatic hepatocholangiocarcinoma. Liver Cancer 11, 460–473 (2022).
[Article](https://doi.org/10.1159%2F000525488)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36158591)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9485952)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xitl2hurbF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Systemic%20treatments%20with%20tyrosine%20kinase%20inhibitor%20and%20platinum-based%20chemotherapy%20in%20patients%20with%20unresectable%20or%20metastatic%20hepatocholangiocarcinoma&journal=Liver%20Cancer&doi=10.1159%2F000525488&volume=11&pages=460-473&publication_year=2022&author=Gigante%2CE) 
  1. Shang, Y. et al. Pharmaceutical immunoglobulin G impairs anti-carcinoma activity of oxaliplatin in colon cancer cells. Br. J. Cancer 124, 1411–1420 (2021).
[Article](https://doi.org/10.1038%2Fs41416-021-01272-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33558709)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039037)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXmsFGhurw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pharmaceutical%20immunoglobulin%20G%20impairs%20anti-carcinoma%20activity%20of%20oxaliplatin%20in%20colon%20cancer%20cells&journal=Br.%20J.%20Cancer&doi=10.1038%2Fs41416-021-01272-6&volume=124&pages=1411-1420&publication_year=2021&author=Shang%2CY) 
  1. Lin, Z. et al. m(6)A-mediated lnc-OXAR promotes oxaliplatin resistance by enhancing Ku70 stability in non-alcoholic steatohepatitis-related hepatocellular carcinoma. J. Exp. Clin. Cancer Res. 43, 206 (2024).
[Article](https://link.springer.com/doi/10.1186/s13046-024-03134-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=39054531)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271202)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhs1ensL3J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=m%286%29A-mediated%20lnc-OXAR%20promotes%20oxaliplatin%20resistance%20by%20enhancing%20Ku70%20stability%20in%20non-alcoholic%20steatohepatitis-related%20hepatocellular%20carcinoma&journal=J.%20Exp.%20Clin.%20Cancer%20Res.&doi=10.1186%2Fs13046-024-03134-4&volume=43&publication_year=2024&author=Lin%2CZ) 
  1. Tang, J. et al. ATR-dependent ubiquitin-specific protease 20 phosphorylation confers oxaliplatin and ferroptosis resistance. MedComm 4, e463 (2023).
[Article](https://doi.org/10.1002%2Fmco2.463)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38124786)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10732327)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXis1KnsrbL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ATR-dependent%20ubiquitin-specific%20protease%2020%20phosphorylation%20confers%20oxaliplatin%20and%20ferroptosis%20resistance&journal=MedComm&doi=10.1002%2Fmco2.463&volume=4&publication_year=2023&author=Tang%2CJ) 
  1. Du, J. et al. DHA exhibits synergistic therapeutic efficacy with cisplatin to induce ferroptosis in pancreatic ductal adenocarcinoma via modulation of iron metabolism. Cell Death Dis. 12, 705 (2021).
[Article](https://doi.org/10.1038%2Fs41419-021-03996-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34262021)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8280115)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhvFWrtb7F)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=DHA%20exhibits%20synergistic%20therapeutic%20efficacy%20with%20cisplatin%20to%20induce%20ferroptosis%20in%20pancreatic%20ductal%20adenocarcinoma%20via%20modulation%20of%20iron%20metabolism&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-021-03996-y&volume=12&publication_year=2021&author=Du%2CJ) 
  1. Roh, J. L. et al. Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett. 381, 96–103 (2016).
[Article](https://doi.org/10.1016%2Fj.canlet.2016.07.035)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27477897)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xht1OktbvK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Induction%20of%20ferroptotic%20cell%20death%20for%20overcoming%20cisplatin%20resistance%20of%20head%20and%20neck%20cancer&journal=Cancer%20Lett.&doi=10.1016%2Fj.canlet.2016.07.035&volume=381&pages=96-103&publication_year=2016&author=Roh%2CJL) 
  1. Chaudhary, N. et al. Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int. J. Cancer 149, 1495–1511 (2021).
[Article](https://doi.org/10.1002%2Fijc.33711)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34146401)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhsVylu7rF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lipocalin%202%20expression%20promotes%20tumor%20progression%20and%20therapy%20resistance%20by%20inhibiting%20ferroptosis%20in%20colorectal%20cancer&journal=Int.%20J.%20Cancer&doi=10.1002%2Fijc.33711&volume=149&pages=1495-1511&publication_year=2021&author=Chaudhary%2CN) 
  1. Zeng, K. et al. Inhibition of CDK1 overcomes oxaliplatin resistance by regulating ACSL4-mediated ferroptosis in colorectal cancer. Adv. Sci. 10, e2301088 (2023).
[Article](https://doi.org/10.1002%2Fadvs.202301088)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20CDK1%20overcomes%20oxaliplatin%20resistance%20by%20regulating%20ACSL4-mediated%20ferroptosis%20in%20colorectal%20cancer&journal=Adv.%20Sci.&doi=10.1002%2Fadvs.202301088&volume=10&publication_year=2023&author=Zeng%2CK) 
  1. Turcu, A. L. et al. DMT1 inhibitors kill cancer stem cells by blocking lysosomal iron translocation. Chemistry 26, 7369–7373 (2020).
[Article](https://doi.org/10.1002%2Fchem.202000159)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32083771)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtFCjsb%2FM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=DMT1%20inhibitors%20kill%20cancer%20stem%20cells%20by%20blocking%20lysosomal%20iron%20translocation&journal=Chemistry&doi=10.1002%2Fchem.202000159&volume=26&pages=7369-7373&publication_year=2020&author=Turcu%2CAL) 
  1. Ouyang, S. et al. Inhibition of STAT3-ferroptosis negative regulatory axis suppresses tumor growth and alleviates chemoresistance in gastric cancer. Redox Biol. 52, 102317 (2022).
[Article](https://doi.org/10.1016%2Fj.redox.2022.102317)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35483272)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9108091)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhtFenurrO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20STAT3-ferroptosis%20negative%20regulatory%20axis%20suppresses%20tumor%20growth%20and%20alleviates%20chemoresistance%20in%20gastric%20cancer&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2022.102317&volume=52&publication_year=2022&author=Ouyang%2CS) 
  1. Fu, D., Wang, C., Yu, L. & Yu, R. Induction of ferroptosis by ATF3 elevation alleviates cisplatin resistance in gastric cancer by restraining Nrf2/Keap1/xCT signaling. Cell Mol. Biol. Lett. 26, 26 (2021).
[Article](https://link.springer.com/doi/10.1186/s11658-021-00271-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34098867)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8186082)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhvFSku7vL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Induction%20of%20ferroptosis%20by%20ATF3%20elevation%20alleviates%20cisplatin%20resistance%20in%20gastric%20cancer%20by%20restraining%20Nrf2%2FKeap1%2FxCT%20signaling&journal=Cell%20Mol.%20Biol.%20Lett.&doi=10.1186%2Fs11658-021-00271-y&volume=26&publication_year=2021&author=Fu%2CD&author=Wang%2CC&author=Yu%2CL&author=Yu%2CR) 
  1. Ajani, J. A. et al. A phase III trial comparing oral S-1/cisplatin and intravenous 5-fluorouracil/cisplatin in patients with untreated diffuse gastric cancer. Ann. Oncol. 28, 2142–2148 (2017).
[Article](https://doi.org/10.1093%2Fannonc%2Fmdx275)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28911091)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BC1cbos1aksg%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20phase%20III%20trial%20comparing%20oral%20S-1%2Fcisplatin%20and%20intravenous%205-fluorouracil%2Fcisplatin%20in%20patients%20with%20untreated%20diffuse%20gastric%20cancer&journal=Ann.%20Oncol.&doi=10.1093%2Fannonc%2Fmdx275&volume=28&pages=2142-2148&publication_year=2017&author=Ajani%2CJA) 
  1. Kang, Y. K. et al. S-1 plus leucovorin and oxaliplatin versus S-1 plus cisplatin as first-line therapy in patients with advanced gastric cancer (SOLAR): a randomised, open-label, phase 3 trial. Lancet Oncol. 21, 1045–1056 (2020).
[Article](https://doi.org/10.1016%2FS1470-2045%2820%2930315-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32682457)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsVahtb%2FO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=S-1%20plus%20leucovorin%20and%20oxaliplatin%20versus%20S-1%20plus%20cisplatin%20as%20first-line%20therapy%20in%20patients%20with%20advanced%20gastric%20cancer%20%28SOLAR%29%3A%20a%20randomised%2C%20open-label%2C%20phase%203%20trial&journal=Lancet%20Oncol.&doi=10.1016%2FS1470-2045%2820%2930315-6&volume=21&pages=1045-1056&publication_year=2020&author=Kang%2CYK) 
  1. Zhan, T., Rindtorff, N. & Boutros, M. Wnt signaling in cancer. Oncogene 36, 1461–1473 (2017).
[Article](https://doi.org/10.1038%2Fonc.2016.304)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27617575)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhsV2gsL3O)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Wnt%20signaling%20in%20cancer&journal=Oncogene&doi=10.1038%2Fonc.2016.304&volume=36&pages=1461-1473&publication_year=2017&author=Zhan%2CT&author=Rindtorff%2CN&author=Boutros%2CM) 
  1. Wang, Y. et al. Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 29, 2190–2202 (2022).
[Article](https://doi.org/10.1038%2Fs41418-022-01008-w)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35534546)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613693)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Wnt%2Fbeta-catenin%20signaling%20confers%20ferroptosis%20resistance%20by%20targeting%20GPX4%20in%20gastric%20cancer&journal=Cell%20Death%20Differ.&doi=10.1038%2Fs41418-022-01008-w&volume=29&pages=2190-2202&publication_year=2022&author=Wang%2CY) 
  1. Ren, J. et al. Carcinoma-associated fibroblasts promote the stemness and chemoresistance of colorectal cancer by transferring exosomal lncRNA H19. Theranostics 8, 3932–3948 (2018).
[Article](https://doi.org/10.7150%2Fthno.25541)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30083271)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6071523)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXit1OisrzL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Carcinoma-associated%20fibroblasts%20promote%20the%20stemness%20and%20chemoresistance%20of%20colorectal%20cancer%20by%20transferring%20exosomal%20lncRNA%20H19&journal=Theranostics&doi=10.7150%2Fthno.25541&volume=8&pages=3932-3948&publication_year=2018&author=Ren%2CJ) 
  1. Zhou, L., Li, J., Tang, Y. & Yang, M. Exosomal LncRNA LINC00659 transferred from cancer-associated fibroblasts promotes colorectal cancer cell progression via miR-342-3p/ANXA2 axis. J. Transl. Med. 19, 8 (2021).
[Article](https://link.springer.com/doi/10.1186/s12967-020-02648-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33407563)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7789760)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXit1ahtL0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Exosomal%20LncRNA%20LINC00659%20transferred%20from%20cancer-associated%20fibroblasts%20promotes%20colorectal%20cancer%20cell%20progression%20via%20miR-342-3p%2FANXA2%20axis&journal=J.%20Transl.%20Med.&doi=10.1186%2Fs12967-020-02648-7&volume=19&publication_year=2021&author=Zhou%2CL&author=Li%2CJ&author=Tang%2CY&author=Yang%2CM) 
  1. Qu, X. et al. Loss of cancer-associated fibroblast-derived exosomal DACT3-AS1 promotes malignant transformation and ferroptosis-mediated oxaliplatin resistance in gastric cancer. Drug Resist. Updat. 68, 100936 (2023).
[Article](https://doi.org/10.1016%2Fj.drup.2023.100936)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36764075)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXivVyktbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Loss%20of%20cancer-associated%20fibroblast-derived%20exosomal%20DACT3-AS1%20promotes%20malignant%20transformation%20and%20ferroptosis-mediated%20oxaliplatin%20resistance%20in%20gastric%20cancer&journal=Drug%20Resist.%20Updat.&doi=10.1016%2Fj.drup.2023.100936&volume=68&publication_year=2023&author=Qu%2CX) 
  1. Zhang, H. et al. CAF secreted miR-522 suppresses ferroptosis and promotes acquired chemo-resistance in gastric cancer. Mol. Cancer 19, 43 (2020).
[Article](https://link.springer.com/doi/10.1186/s12943-020-01168-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32106859)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045485)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXkvValu7c%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=CAF%20secreted%20miR-522%20suppresses%20ferroptosis%20and%20promotes%20acquired%20chemo-resistance%20in%20gastric%20cancer&journal=Mol.%20Cancer&doi=10.1186%2Fs12943-020-01168-8&volume=19&publication_year=2020&author=Zhang%2CH) 
  1. Qi, R. et al. Cancer-associated fibroblasts suppress ferroptosis and induce gemcitabine resistance in pancreatic cancer cells by secreting exosome-derived ACSL4-targeting miRNAs. Drug Resist. Updat. 68, 100960 (2023).
[Article](https://doi.org/10.1016%2Fj.drup.2023.100960)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37003125)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXmsFOgtbw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cancer-associated%20fibroblasts%20suppress%20ferroptosis%20and%20induce%20gemcitabine%20resistance%20in%20pancreatic%20cancer%20cells%20by%20secreting%20exosome-derived%20ACSL4-targeting%20miRNAs&journal=Drug%20Resist.%20Updat.&doi=10.1016%2Fj.drup.2023.100960&volume=68&publication_year=2023&author=Qi%2CR) 
  1. Zhang, Q. et al. Metabolic reprogramming of ovarian cancer involves ACSL1-mediated metastasis stimulation through upregulated protein myristoylation. Oncogene 40, 97–111 (2021).
[Article](https://doi.org/10.1038%2Fs41388-020-01516-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33082557)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metabolic%20reprogramming%20of%20ovarian%20cancer%20involves%20ACSL1-mediated%20metastasis%20stimulation%20through%20upregulated%20protein%20myristoylation&journal=Oncogene&doi=10.1038%2Fs41388-020-01516-4&volume=40&pages=97-111&publication_year=2021&author=Zhang%2CQ) 
  1. Tan, Y. et al. Metabolic reprogramming from glycolysis to fatty acid uptake and beta-oxidation in platinum-resistant cancer cells. Nat. Commun. 13, 4554 (2022).
[Article](https://doi.org/10.1038%2Fs41467-022-32101-w)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35931676)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356138)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XitFWlsrfM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metabolic%20reprogramming%20from%20glycolysis%20to%20fatty%20acid%20uptake%20and%20beta-oxidation%20in%20platinum-resistant%20cancer%20cells&journal=Nat.%20Commun.&doi=10.1038%2Fs41467-022-32101-w&volume=13&publication_year=2022&author=Tan%2CY) 
  1. Zhang, Q. et al. ACSL1-induced ferroptosis and platinum resistance in ovarian cancer by increasing FSP1 N-myristylation and stability. Cell Death Discov. 9, 83 (2023).
[Article](https://doi.org/10.1038%2Fs41420-023-01385-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36882396)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992462)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXlsFSitrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ACSL1-induced%20ferroptosis%20and%20platinum%20resistance%20in%20ovarian%20cancer%20by%20increasing%20FSP1%20N-myristylation%20and%20stability&journal=Cell%20Death%20Discov.&doi=10.1038%2Fs41420-023-01385-2&volume=9&publication_year=2023&author=Zhang%2CQ) 
  1. Guo, C. et al. Pharmacological properties and derivatives of shikonin-a review in recent years. Pharm. Res. 149, 104463 (2019).
[Article](https://doi.org/10.1016%2Fj.phrs.2019.104463)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhvFCktr%2FJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pharmacological%20properties%20and%20derivatives%20of%20shikonin-a%20review%20in%20recent%20years&journal=Pharm.%20Res.&doi=10.1016%2Fj.phrs.2019.104463&volume=149&publication_year=2019&author=Guo%2CC) 
  1. Ni, M. et al. Shikonin and cisplatin synergistically overcome cisplatin resistance of ovarian cancer by inducing ferroptosis via upregulation of HMOX1 to promote Fe(2+) accumulation. Phytomedicine 112, 154701 (2023).
[Article](https://doi.org/10.1016%2Fj.phymed.2023.154701)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36773431)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXjtFWju7s%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Shikonin%20and%20cisplatin%20synergistically%20overcome%20cisplatin%20resistance%20of%20ovarian%20cancer%20by%20inducing%20ferroptosis%20via%20upregulation%20of%20HMOX1%20to%20promote%20Fe%282%2B%29%20accumulation&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2023.154701&volume=112&publication_year=2023&author=Ni%2CM) 
  1. Wang, Y. et al. Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 81, 384–399 (2021).
[Article](https://doi.org/10.1158%2F0008-5472.CAN-20-1488)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33172933)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXlvFels7o%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Frizzled-7%20identifies%20platinum-tolerant%20ovarian%20cancer%20cells%20susceptible%20to%20ferroptosis&journal=Cancer%20Res.&doi=10.1158%2F0008-5472.CAN-20-1488&volume=81&pages=384-399&publication_year=2021&author=Wang%2CY) 
  1. Khan, S. A., Tavolari, S. & Brandi, G. Cholangiocarcinoma: epidemiology and risk factors. Liver Int. 39, 19–31 (2019).
[Article](https://doi.org/10.1111%2Fliv.14095)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30851228)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cholangiocarcinoma%3A%20epidemiology%20and%20risk%20factors&journal=Liver%20Int.&doi=10.1111%2Fliv.14095&volume=39&pages=19-31&publication_year=2019&author=Khan%2CSA&author=Tavolari%2CS&author=Brandi%2CG) 
  1. Duan, S. et al. Loss of FBXO31-mediated degradation of DUSP6 dysregulates ERK and PI3K-AKT signaling and promotes prostate tumorigenesis. Cell Rep. 37, 109870 (2021).
[Article](https://doi.org/10.1016%2Fj.celrep.2021.109870)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34686346)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8577224)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXitlWns77N)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Loss%20of%20FBXO31-mediated%20degradation%20of%20DUSP6%20dysregulates%20ERK%20and%20PI3K-AKT%20signaling%20and%20promotes%20prostate%20tumorigenesis&journal=Cell%20Rep.&doi=10.1016%2Fj.celrep.2021.109870&volume=37&publication_year=2021&author=Duan%2CS) 
  1. Zou, S. et al. FBXO31 suppresses gastric cancer EMT by targeting Snail1 for proteasomal degradation. Mol. Cancer Res. 16, 286–295 (2018).
[Article](https://doi.org/10.1158%2F1541-7786.MCR-17-0432)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29117943)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXitVeiurs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=FBXO31%20suppresses%20gastric%20cancer%20EMT%20by%20targeting%20Snail1%20for%20proteasomal%20degradation&journal=Mol.%20Cancer%20Res.&doi=10.1158%2F1541-7786.MCR-17-0432&volume=16&pages=286-295&publication_year=2018&author=Zou%2CS) 
  1. Zhu, Z. et al. FBXO31 sensitizes cancer stem cells-like cells to cisplatin by promoting ferroptosis and facilitating proteasomal degradation of GPX4 in cholangiocarcinoma. Liver Int. 42, 2871–2888 (2022).
[Article](https://doi.org/10.1111%2Fliv.15462)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36269678)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XivVShtLzI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=FBXO31%20sensitizes%20cancer%20stem%20cells-like%20cells%20to%20cisplatin%20by%20promoting%20ferroptosis%20and%20facilitating%20proteasomal%20degradation%20of%20GPX4%20in%20cholangiocarcinoma&journal=Liver%20Int.&doi=10.1111%2Fliv.15462&volume=42&pages=2871-2888&publication_year=2022&author=Zhu%2CZ) 
  1. Wu, C. C. et al. Tumor sidedness and efficacy of first-line therapy in patients with RAS/BRAF wild-type metastatic colorectal cancer: a network meta-analysis. Crit. Rev. Oncol. Hematol. 145, 102823 (2020).
[Article](https://doi.org/10.1016%2Fj.critrevonc.2019.102823)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31783291)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Tumor%20sidedness%20and%20efficacy%20of%20first-line%20therapy%20in%20patients%20with%20RAS%2FBRAF%20wild-type%20metastatic%20colorectal%20cancer%3A%20a%20network%20meta-analysis&journal=Crit.%20Rev.%20Oncol.%20Hematol.&doi=10.1016%2Fj.critrevonc.2019.102823&volume=145&publication_year=2020&author=Wu%2CCC) 
  1. Ye, Z. et al. Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells. Am. J. Cancer Res. 10, 1182–1193 (2020).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32368394)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7191101)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Abrogation%20of%20ARF6%20promotes%20RSL3-induced%20ferroptosis%20and%20mitigates%20gemcitabine%20resistance%20in%20pancreatic%20cancer%20cells&journal=Am.%20J.%20Cancer%20Res.&volume=10&pages=1182-1193&publication_year=2020&author=Ye%2CZ) 
  1. Pardieu, B. et al. Cystine uptake inhibition potentiates front-line therapies in acute myeloid leukemia. Leukemia 36, 1585–1595 (2022).
[Article](https://doi.org/10.1038%2Fs41375-022-01573-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35474100)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhsFOgsbrF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cystine%20uptake%20inhibition%20potentiates%20front-line%20therapies%20in%20acute%20myeloid%20leukemia&journal=Leukemia&doi=10.1038%2Fs41375-022-01573-6&volume=36&pages=1585-1595&publication_year=2022&author=Pardieu%2CB) 
  1. Han, L., Li, L. & Wu, G. Induction of ferroptosis by carnosic acid-mediated inactivation of Nrf2/HO-1 potentiates cisplatin responsiveness in OSCC cells. Mol. Cell Probes 64, 101821 (2022).
[Article](https://doi.org/10.1016%2Fj.mcp.2022.101821)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35490795)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xht1Kmur%2FN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Induction%20of%20ferroptosis%20by%20carnosic%20acid-mediated%20inactivation%20of%20Nrf2%2FHO-1%20potentiates%20cisplatin%20responsiveness%20in%20OSCC%20cells&journal=Mol.%20Cell%20Probes&doi=10.1016%2Fj.mcp.2022.101821&volume=64&publication_year=2022&author=Han%2CL&author=Li%2CL&author=Wu%2CG) 
  1. Zheng, J. & Conrad, M. The metabolic underpinnings of ferroptosis. Cell Metab. 32, 920–937 (2020).
[Article](https://doi.org/10.1016%2Fj.cmet.2020.10.011)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33217331)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXisVyntLrK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20metabolic%20underpinnings%20of%20ferroptosis&journal=Cell%20Metab.&doi=10.1016%2Fj.cmet.2020.10.011&volume=32&pages=920-937&publication_year=2020&author=Zheng%2CJ&author=Conrad%2CM) 
  1. Wang, H., Liu, C., Zhao, Y. & Gao, G. Mitochondria regulation in ferroptosis. Eur. J. Cell Biol. 99, 151058 (2020).
[Article](https://doi.org/10.1016%2Fj.ejcb.2019.151058)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31810634)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitlSqtb3M)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondria%20regulation%20in%20ferroptosis&journal=Eur.%20J.%20Cell%20Biol.&doi=10.1016%2Fj.ejcb.2019.151058&volume=99&publication_year=2020&author=Wang%2CH&author=Liu%2CC&author=Zhao%2CY&author=Gao%2CG) 
  1. Sedlackova, L. & Korolchuk, V. I. Mitochondrial quality control as a key determinant of cell survival. Biochim. Biophys. Acta Mol. Cell Res. 1866, 575–587 (2019).
[Article](https://doi.org/10.1016%2Fj.bbamcr.2018.12.012)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30594496)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXntFCqtQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20quality%20control%20as%20a%20key%20determinant%20of%20cell%20survival&journal=Biochim.%20Biophys.%20Acta%20Mol.%20Cell%20Res.&doi=10.1016%2Fj.bbamcr.2018.12.012&volume=1866&pages=575-587&publication_year=2019&author=Sedlackova%2CL&author=Korolchuk%2CVI) 
  1. Hao, S. et al. Metabolic networks in ferroptosis. Oncol. Lett. 15, 5405–5411 (2018).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29556292)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5844144)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metabolic%20networks%20in%20ferroptosis&journal=Oncol.%20Lett.&volume=15&pages=5405-5411&publication_year=2018&author=Hao%2CS) 
  1. Salaye, L. et al. A low iron diet protects from steatohepatitis in a mouse model. Nutrients 11, 2172 (2019).
  1. Backe, M. B. et al. Iron regulation of pancreatic beta-cell functions and oxidative stress. Annu. Rev. Nutr. 36, 241–273 (2016).
[Article](https://doi.org/10.1146%2Fannurev-nutr-071715-050939)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27146016)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XntlKgsLw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20regulation%20of%20pancreatic%20beta-cell%20functions%20and%20oxidative%20stress&journal=Annu.%20Rev.%20Nutr.&doi=10.1146%2Fannurev-nutr-071715-050939&volume=36&pages=241-273&publication_year=2016&author=Backe%2CMB) 
  1. Rehman, K. & Akash, M. S. H. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J. Cell Biochem. 118, 3577–3585 (2017).
[Article](https://doi.org/10.1002%2Fjcb.26097)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28460155)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXovVSntLo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mechanism%20of%20generation%20of%20oxidative%20stress%20and%20pathophysiology%20of%20type%202%20diabetes%20mellitus%3A%20how%20are%20they%20interlinked%3F&journal=J.%20Cell%20Biochem.&doi=10.1002%2Fjcb.26097&volume=118&pages=3577-3585&publication_year=2017&author=Rehman%2CK&author=Akash%2CMSH) 
  1. Krummel, B. et al. The central role of glutathione peroxidase 4 in the regulation of ferroptosis and its implications for pro-inflammatory cytokine-mediated beta-cell death. Biochim. Biophys. Acta Mol. Basis Dis. 1867, 166114 (2021).
[Article](https://doi.org/10.1016%2Fj.bbadis.2021.166114)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33662571)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20central%20role%20of%20glutathione%20peroxidase%204%20in%20the%20regulation%20of%20ferroptosis%20and%20its%20implications%20for%20pro-inflammatory%20cytokine-mediated%20beta-cell%20death&journal=Biochim.%20Biophys.%20Acta%20Mol.%20Basis%20Dis.&doi=10.1016%2Fj.bbadis.2021.166114&volume=1867&publication_year=2021&author=Krummel%2CB) 
  1. Sampaio, A. F. et al. Iron toxicity mediated by oxidative stress enhances tissue damage in an animal model of diabetes. Biometals 27, 349–361 (2014).
[Article](https://link.springer.com/doi/10.1007/s10534-014-9717-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24549594)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXislClt70%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20toxicity%20mediated%20by%20oxidative%20stress%20enhances%20tissue%20damage%20in%20an%20animal%20model%20of%20diabetes&journal=Biometals&doi=10.1007%2Fs10534-014-9717-8&volume=27&pages=349-361&publication_year=2014&author=Sampaio%2CAF) 
  1. Thompson, P. J. et al. Targeted elimination of senescent beta cells prevents type 1 diabetes. Cell Metab. 29, 1045–1060 (2019).
[Article](https://doi.org/10.1016%2Fj.cmet.2019.01.021)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30799288)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXjs1Gjtb0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeted%20elimination%20of%20senescent%20beta%20cells%20prevents%20type%201%20diabetes&journal=Cell%20Metab.&doi=10.1016%2Fj.cmet.2019.01.021&volume=29&pages=1045-1060&publication_year=2019&author=Thompson%2CPJ) 
  1. Fleming, M. D. et al. Nramp2 is mutated in the anemic Belgrade (b) rat: evidence of a role for Nramp2 in endosomal iron transport. Proc. Natl. Acad. Sci. USA 95, 1148–1153 (1998).
[Article](https://doi.org/10.1073%2Fpnas.95.3.1148)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9448300)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC18702)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1cXosFSrsQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nramp2%20is%20mutated%20in%20the%20anemic%20Belgrade%20%28b%29%20rat%3A%20evidence%20of%20a%20role%20for%20Nramp2%20in%20endosomal%20iron%20transport&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.95.3.1148&volume=95&pages=1148-1153&publication_year=1998&author=Fleming%2CMD) 
  1. Hansen, J. B. et al. Divalent metal transporter 1 regulates iron-mediated ROS and pancreatic beta cell fate in response to cytokines. Cell Metab. 16, 449–461 (2012).
[Article](https://doi.org/10.1016%2Fj.cmet.2012.09.001)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23000401)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xhtl2rs7fF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Divalent%20metal%20transporter%201%20regulates%20iron-mediated%20ROS%20and%20pancreatic%20beta%20cell%20fate%20in%20response%20to%20cytokines&journal=Cell%20Metab.&doi=10.1016%2Fj.cmet.2012.09.001&volume=16&pages=449-461&publication_year=2012&author=Hansen%2CJB) 
  1. Cooksey, R. C. et al. Oxidative stress, beta-cell apoptosis, and decreased insulin secretory capacity in mouse models of hemochromatosis. Endocrinology 145, 5305–5312 (2004).
[Article](https://doi.org/10.1210%2Fen.2004-0392)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15308612)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXptVygsrY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oxidative%20stress%2C%20beta-cell%20apoptosis%2C%20and%20decreased%20insulin%20secretory%20capacity%20in%20mouse%20models%20of%20hemochromatosis&journal=Endocrinology&doi=10.1210%2Fen.2004-0392&volume=145&pages=5305-5312&publication_year=2004&author=Cooksey%2CRC) 
  1. Lee, Y. S. & Olefsky, J. Chronic tissue inflammation and metabolic disease. Genes Dev. 35, 307–328 (2021).
[Article](https://doi.org/10.1101%2Fgad.346312.120)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33649162)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7919414)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXns1yqsr4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Chronic%20tissue%20inflammation%20and%20metabolic%20disease&journal=Genes%20Dev.&doi=10.1101%2Fgad.346312.120&volume=35&pages=307-328&publication_year=2021&author=Lee%2CYS&author=Olefsky%2CJ) 
  1. Zhang, Y. et al. Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432 (1994).
[Article](https://doi.org/10.1038%2F372425a0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7984236)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2MXisVGqsbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Positional%20cloning%20of%20the%20mouse%20obese%20gene%20and%20its%20human%20homologue&journal=Nature&doi=10.1038%2F372425a0&volume=372&pages=425-432&publication_year=1994&author=Zhang%2CY) 
  1. Hu, E., Liang, P. & Spiegelman, B. M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem. 271, 10697–10703 (1996).
[Article](https://doi.org/10.1074%2Fjbc.271.18.10697)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8631877)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK28XivVaqtLw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=AdipoQ%20is%20a%20novel%20adipose-specific%20gene%20dysregulated%20in%20obesity&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.271.18.10697&volume=271&pages=10697-10703&publication_year=1996&author=Hu%2CE&author=Liang%2CP&author=Spiegelman%2CBM) 
  1. Gabrielsen, J. S. et al. Adipocyte iron regulates adiponectin and insulin sensitivity. J. Clin. Investig. 122, 3529–3540 (2012).
[Article](https://doi.org/10.1172%2FJCI44421)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22996660)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461897)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhsV2itrfK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Adipocyte%20iron%20regulates%20adiponectin%20and%20insulin%20sensitivity&journal=J.%20Clin.%20Investig.&doi=10.1172%2FJCI44421&volume=122&pages=3529-3540&publication_year=2012&author=Gabrielsen%2CJS) 
  1. Gao, Y. et al. Adipocyte iron regulates leptin and food intake. J. Clin. Investig. 125, 3681–3691 (2015).
[Article](https://doi.org/10.1172%2FJCI81860)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26301810)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4588289)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Adipocyte%20iron%20regulates%20leptin%20and%20food%20intake&journal=J.%20Clin.%20Investig.&doi=10.1172%2FJCI81860&volume=125&pages=3681-3691&publication_year=2015&author=Gao%2CY) 
  1. Kusminski, C. M. et al. A novel model of diabetic complications: adipocyte mitochondrial dysfunction triggers massive beta-cell hyperplasia. Diabetes 69, 313–330 (2020).
[Article](https://doi.org/10.2337%2Fdb19-0327)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31882562)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7034182)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXptVSnur8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20novel%20model%20of%20diabetic%20complications%3A%20adipocyte%20mitochondrial%20dysfunction%20triggers%20massive%20beta-cell%20hyperplasia&journal=Diabetes&doi=10.2337%2Fdb19-0327&volume=69&pages=313-330&publication_year=2020&author=Kusminski%2CCM) 
  1. Altamura, S. et al. Iron aggravates hepatic insulin resistance in the absence of inflammation in a novel db/db mouse model with iron overload. Mol. Metab. 51, 101235 (2021).
[Article](https://doi.org/10.1016%2Fj.molmet.2021.101235)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33872860)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8131719)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVCkur%2FO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20aggravates%20hepatic%20insulin%20resistance%20in%20the%20absence%20of%20inflammation%20in%20a%20novel%20db%2Fdb%20mouse%20model%20with%20iron%20overload&journal=Mol.%20Metab.&doi=10.1016%2Fj.molmet.2021.101235&volume=51&publication_year=2021&author=Altamura%2CS) 
  1. Simcox, J. A. et al. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis. Diabetes 64, 1108–1119 (2015).
[Article](https://doi.org/10.2337%2Fdb14-0646)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25315005)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXlslCjsL0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dietary%20iron%20controls%20circadian%20hepatic%20glucose%20metabolism%20through%20heme%20synthesis&journal=Diabetes&doi=10.2337%2Fdb14-0646&volume=64&pages=1108-1119&publication_year=2015&author=Simcox%2CJA) 
  1. Li, W. et al. A meta-analysis of cohort studies including dose-response relationship between shift work and the risk of diabetes mellitus. Eur. J. Epidemiol. 34, 1013–1024 (2019).
[Article](https://link.springer.com/doi/10.1007/s10654-019-00561-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31512118)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20meta-analysis%20of%20cohort%20studies%20including%20dose-response%20relationship%20between%20shift%20work%20and%20the%20risk%20of%20diabetes%20mellitus&journal=Eur.%20J.%20Epidemiol.&doi=10.1007%2Fs10654-019-00561-y&volume=34&pages=1013-1024&publication_year=2019&author=Li%2CW) 
  1. Pain, D. & Dancis, A. Roles of Fe-S proteins: from cofactor synthesis to iron homeostasis to protein synthesis. Curr. Opin. Genet. Dev. 38, 45–51 (2016).
[Article](https://doi.org/10.1016%2Fj.gde.2016.03.006)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27061491)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5055408)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xks1OqtLs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Roles%20of%20Fe-S%20proteins%3A%20from%20cofactor%20synthesis%20to%20iron%20homeostasis%20to%20protein%20synthesis&journal=Curr.%20Opin.%20Genet.%20Dev.&doi=10.1016%2Fj.gde.2016.03.006&volume=38&pages=45-51&publication_year=2016&author=Pain%2CD&author=Dancis%2CA) 
  1. Mena, N. P. et al. Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21, 92–105 (2015).
[Article](https://doi.org/10.1016%2Fj.mito.2015.02.001)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25667951)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXis1aqt7Y%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20iron%20homeostasis%20and%20its%20dysfunctions%20in%20neurodegenerative%20disorders&journal=Mitochondrion&doi=10.1016%2Fj.mito.2015.02.001&volume=21&pages=92-105&publication_year=2015&author=Mena%2CNP) 
  1. Wei, S. et al. Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J. Hazard. Mater. 384, 121390 (2020).
[Article](https://doi.org/10.1016%2Fj.jhazmat.2019.121390)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31735470)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitFKqs7fF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Arsenic%20induces%20pancreatic%20dysfunction%20and%20ferroptosis%20via%20mitochondrial%20ROS-autophagy-lysosomal%20pathway&journal=J.%20Hazard.%20Mater.&doi=10.1016%2Fj.jhazmat.2019.121390&volume=384&publication_year=2020&author=Wei%2CS) 
  1. Hesselink, M. K., Schrauwen-Hinderling, V. & Schrauwen, P. Skeletal muscle mitochondria as a target to prevent or treat type 2 diabetes mellitus. Nat. Rev. Endocrinol. 12, 633–645 (2016).
[Article](https://doi.org/10.1038%2Fnrendo.2016.104)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27448057)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xht12gurnK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Skeletal%20muscle%20mitochondria%20as%20a%20target%20to%20prevent%20or%20treat%20type%202%20diabetes%20mellitus&journal=Nat.%20Rev.%20Endocrinol.&doi=10.1038%2Fnrendo.2016.104&volume=12&pages=633-645&publication_year=2016&author=Hesselink%2CMK&author=Schrauwen-Hinderling%2CV&author=Schrauwen%2CP) 
  1. Stugiewicz, M. et al. The influence of iron deficiency on the functioning of skeletal muscles: experimental evidence and clinical implications. Eur. J. Heart Fail. 18, 762–773 (2016).
[Article](https://doi.org/10.1002%2Fejhf.467)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26800032)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20influence%20of%20iron%20deficiency%20on%20the%20functioning%20of%20skeletal%20muscles%3A%20experimental%20evidence%20and%20clinical%20implications&journal=Eur.%20J.%20Heart%20Fail.&doi=10.1002%2Fejhf.467&volume=18&pages=762-773&publication_year=2016&author=Stugiewicz%2CM) 
  1. Lascar, N. et al. Type 2 diabetes in adolescents and young adults. Lancet Diabetes Endocrinol. 6, 69–80 (2018).
[Article](https://doi.org/10.1016%2FS2213-8587%2817%2930186-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28847479)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Type%202%20diabetes%20in%20adolescents%20and%20young%20adults&journal=Lancet%20Diabetes%20Endocrinol.&doi=10.1016%2FS2213-8587%2817%2930186-9&volume=6&pages=69-80&publication_year=2018&author=Lascar%2CN) 
  1. Luo, E. F. et al. Role of ferroptosis in the process of diabetes-induced endothelial dysfunction. World J. Diabetes 12, 124–137 (2021).
[Article](https://doi.org/10.4239%2Fwjd.v12.i2.124)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33594332)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7839168)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20ferroptosis%20in%20the%20process%20of%20diabetes-induced%20endothelial%20dysfunction&journal=World%20J.%20Diabetes&doi=10.4239%2Fwjd.v12.i2.124&volume=12&pages=124-137&publication_year=2021&author=Luo%2CEF) 
  1. Hao, L. et al. SLC40A1 mediates ferroptosis and cognitive dysfunction in type 1 diabetes. Neuroscience 463, 216–226 (2021).
[Article](https://doi.org/10.1016%2Fj.neuroscience.2021.03.009)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33727075)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXot1Gitrc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=SLC40A1%20mediates%20ferroptosis%20and%20cognitive%20dysfunction%20in%20type%201%20diabetes&journal=Neuroscience&doi=10.1016%2Fj.neuroscience.2021.03.009&volume=463&pages=216-226&publication_year=2021&author=Hao%2CL) 
  1. Ajoolabady, A. et al. Ferritinophagy and ferroptosis in the management of metabolic diseases. Trends Endocrinol. Metab. 32, 444–462 (2021).
[Article](https://doi.org/10.1016%2Fj.tem.2021.04.010)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34006412)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVCqt7vK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferritinophagy%20and%20ferroptosis%20in%20the%20management%20of%20metabolic%20diseases&journal=Trends%20Endocrinol.%20Metab.&doi=10.1016%2Fj.tem.2021.04.010&volume=32&pages=444-462&publication_year=2021&author=Ajoolabady%2CA) 
  1. Li, W. et al. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol. 39, 210–225 (2020).
[Article](https://doi.org/10.1089%2Fdna.2019.5097)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31809190)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitVGns7g%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20is%20involved%20in%20diabetes%20myocardial%20ischemia%2Freperfusion%20injury%20through%20endoplasmic%20reticulum%20stress&journal=DNA%20Cell%20Biol.&doi=10.1089%2Fdna.2019.5097&volume=39&pages=210-225&publication_year=2020&author=Li%2CW) 
  1. Liu, P. et al. Ferroptosis: mechanisms and role in diabetes mellitus and its complications. Ageing Res. Rev. 94, 102201 (2024).
[Article](https://doi.org/10.1016%2Fj.arr.2024.102201)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38242213)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhvFaju70%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20mechanisms%20and%20role%20in%20diabetes%20mellitus%20and%20its%20complications&journal=Ageing%20Res.%20Rev.&doi=10.1016%2Fj.arr.2024.102201&volume=94&publication_year=2024&author=Liu%2CP) 
  1. Fernandez-Real, J. M. et al. Blood letting in high-ferritin type 2 diabetes: effects on insulin sensitivity and beta-cell function. Diabetes 51, 1000–1004 (2002).
[Article](https://doi.org/10.2337%2Fdiabetes.51.4.1000)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11916918)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD38Xis1Ojur0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Blood%20letting%20in%20high-ferritin%20type%202%20diabetes%3A%20effects%20on%20insulin%20sensitivity%20and%20beta-cell%20function&journal=Diabetes&doi=10.2337%2Fdiabetes.51.4.1000&volume=51&pages=1000-1004&publication_year=2002&author=Fernandez-Real%2CJM) 
  1. Yan, H. F., Liu, Z. Y., Guan, Z. A. & Guo, C. Deferoxamine ameliorates adipocyte dysfunction by modulating iron metabolism in ob/ob mice. Endocr. Connect. 7, 604–616 (2018).
[Article](https://doi.org/10.1530%2FEC-18-0054)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29678877)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5911700)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXltFWrsbk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deferoxamine%20ameliorates%20adipocyte%20dysfunction%20by%20modulating%20iron%20metabolism%20in%20ob%2Fob%20mice&journal=Endocr.%20Connect.&doi=10.1530%2FEC-18-0054&volume=7&pages=604-616&publication_year=2018&author=Yan%2CHF&author=Liu%2CZY&author=Guan%2CZA&author=Guo%2CC) 
  1. Dongiovanni, P. et al. Iron depletion by deferoxamine up-regulates glucose uptake and insulin signaling in hepatoma cells and in rat liver. Am. J. Pathol. 172, 738–747 (2008).
[Article](https://doi.org/10.2353%2Fajpath.2008.070097)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18245813)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2258266)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXktVKhu7c%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20depletion%20by%20deferoxamine%20up-regulates%20glucose%20uptake%20and%20insulin%20signaling%20in%20hepatoma%20cells%20and%20in%20rat%20liver&journal=Am.%20J.%20Pathol.&doi=10.2353%2Fajpath.2008.070097&volume=172&pages=738-747&publication_year=2008&author=Dongiovanni%2CP) 
  1. Cooksey, R. C. et al. Dietary iron restriction or iron chelation protects from diabetes and loss of beta-cell function in the obese (ob/ob lep-/-) mouse. Am. J. Physiol. Endocrinol. Metab. 298, E1236–E1243 (2010).
[Article](https://doi.org/10.1152%2Fajpendo.00022.2010)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20354157)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2886527)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXnvFamsbg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dietary%20iron%20restriction%20or%20iron%20chelation%20protects%20from%20diabetes%20and%20loss%20of%20beta-cell%20function%20in%20the%20obese%20%28ob%2Fob%20lep-%2F-%29%20mouse&journal=Am.%20J.%20Physiol.%20Endocrinol.%20Metab.&doi=10.1152%2Fajpendo.00022.2010&volume=298&pages=E1236-E1243&publication_year=2010&author=Cooksey%2CRC) 
  1. Abdul, Y. et al. Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: role of endothelial ferroptosis. Transl. Stroke Res. 12, 615–630 (2021).
[Article](https://link.springer.com/doi/10.1007/s12975-020-00844-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32875455)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhslygsLzE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deferoxamine%20treatment%20prevents%20post-stroke%20vasoregression%20and%20neurovascular%20unit%20remodeling%20leading%20to%20improved%20functional%20outcomes%20in%20type%202%20male%20diabetic%20rats%3A%20role%20of%20endothelial%20ferroptosis&journal=Transl.%20Stroke%20Res.&doi=10.1007%2Fs12975-020-00844-7&volume=12&pages=615-630&publication_year=2021&author=Abdul%2CY) 
  1. Zhou, Y. The protective effects of cryptochlorogenic acid on beta-cells function in diabetes in vivo and vitro via inhibition of ferroptosis. Diabetes Metab. Syndr. Obes. 13, 1921–1931 (2020).
[Article](https://doi.org/10.2147%2FDMSO.S249382)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32606852)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7294720)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXisFaltr3L)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20protective%20effects%20of%20cryptochlorogenic%20acid%20on%20beta-cells%20function%20in%20diabetes%20in%20vivo%20and%20vitro%20via%20inhibition%20of%20ferroptosis&journal=Diabetes%20Metab.%20Syndr.%20Obes.&doi=10.2147%2FDMSO.S249382&volume=13&pages=1921-1931&publication_year=2020&author=Zhou%2CY) 
  1. Palacka, P. et al. Complementary therapy in diabetic patients with chronic complications: a pilot study. Bratisl. Lek. Listy 111, 205–211 (2010).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20586147)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXovVGitbY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Complementary%20therapy%20in%20diabetic%20patients%20with%20chronic%20complications%3A%20a%20pilot%20study&journal=Bratisl.%20Lek.%20Listy&volume=111&pages=205-211&publication_year=2010&author=Palacka%2CP) 
  1. Sloan, G., Selvarajah, D. & Tesfaye, S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat. Rev. Endocrinol. 17, 400–420 (2021).
[Article](https://doi.org/10.1038%2Fs41574-021-00496-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34050323)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pathogenesis%2C%20diagnosis%20and%20clinical%20management%20of%20diabetic%20sensorimotor%20peripheral%20neuropathy&journal=Nat.%20Rev.%20Endocrinol.&doi=10.1038%2Fs41574-021-00496-z&volume=17&pages=400-420&publication_year=2021&author=Sloan%2CG&author=Selvarajah%2CD&author=Tesfaye%2CS) 
  1. Yarahmadi, A. et al. The effect of platelet-rich plasma-fibrin glue dressing in combination with oral vitamin E and C for treatment of non-healing diabetic foot ulcers: a randomized, double-blind, parallel-group, clinical trial. Expert Opin. Biol. Ther. 21, 687–696 (2021).
[Article](https://doi.org/10.1080%2F14712598.2021.1897100)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33646060)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXovF2jsLg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20effect%20of%20platelet-rich%20plasma-fibrin%20glue%20dressing%20in%20combination%20with%20oral%20vitamin%20E%20and%20C%20for%20treatment%20of%20non-healing%20diabetic%20foot%20ulcers%3A%20a%20randomized%2C%20double-blind%2C%20parallel-group%2C%20clinical%20trial&journal=Expert%20Opin.%20Biol.%20Ther.&doi=10.1080%2F14712598.2021.1897100&volume=21&pages=687-696&publication_year=2021&author=Yarahmadi%2CA) 
  1. Liu, C., Wang, W. & Gu, J. Targeting ferroptosis: new perspectives of Chinese herbal medicine in the treatment of diabetes and its complications. Heliyon 9, e22250 (2023).
[Article](https://doi.org/10.1016%2Fj.heliyon.2023.e22250)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38076182)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10709212)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXisFajs7vO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20ferroptosis%3A%20new%20perspectives%20of%20Chinese%20herbal%20medicine%20in%20the%20treatment%20of%20diabetes%20and%20its%20complications&journal=Heliyon&doi=10.1016%2Fj.heliyon.2023.e22250&volume=9&publication_year=2023&author=Liu%2CC&author=Wang%2CW&author=Gu%2CJ) 
  1. Fang, X., Ardehali, H., Min, J. & Wang, F. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease. Nat. Rev. Cardiol. 20, 7–23 (2023).
[Article](https://doi.org/10.1038%2Fs41569-022-00735-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35788564)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20molecular%20and%20metabolic%20landscape%20of%20iron%20and%20ferroptosis%20in%20cardiovascular%20disease&journal=Nat.%20Rev.%20Cardiol.&doi=10.1038%2Fs41569-022-00735-4&volume=20&pages=7-23&publication_year=2023&author=Fang%2CX&author=Ardehali%2CH&author=Min%2CJ&author=Wang%2CF) 
  1. Miao, R. et al. Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities. Cell Death Dis. 14, 186 (2023).
[Article](https://doi.org/10.1038%2Fs41419-023-05708-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36882414)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9992652)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXlsFSisbc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20metabolism%20and%20ferroptosis%20in%20type%202%20diabetes%20mellitus%20and%20complications%3A%20mechanisms%20and%20therapeutic%20opportunities&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-023-05708-0&volume=14&publication_year=2023&author=Miao%2CR) 
  1. Sha, W. et al. Mechanism of ferroptosis and its role in type 2 diabetes mellitus. J. Diabetes Res 2021, 9999612 (2021).
[Article](https://doi.org/10.1155%2F2021%2F9999612)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34258295)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8257355)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mechanism%20of%20ferroptosis%20and%20its%20role%20in%20type%202%20diabetes%20mellitus&journal=J.%20Diabetes%20Res&doi=10.1155%2F2021%2F9999612&volume=2021&publication_year=2021&author=Sha%2CW) 
  1. Butler, L. M. et al. Lipids and cancer: emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev. 159, 245–293 (2020).
[Article](https://doi.org/10.1016%2Fj.addr.2020.07.013)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32711004)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736102)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhs1Wrs7zL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lipids%20and%20cancer%3A%20emerging%20roles%20in%20pathogenesis%2C%20diagnosis%20and%20therapeutic%20intervention&journal=Adv.%20Drug%20Deliv.%20Rev.&doi=10.1016%2Fj.addr.2020.07.013&volume=159&pages=245-293&publication_year=2020&author=Butler%2CLM) 
  1. Hoy, A. J., Nagarajan, S. R. & Butler, L. M. Tumour fatty acid metabolism in the context of therapy resistance and obesity. Nat. Rev. Cancer 21, 753–766 (2021).
[Article](https://doi.org/10.1038%2Fs41568-021-00388-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34417571)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhvVGgu7bF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Tumour%20fatty%20acid%20metabolism%20in%20the%20context%20of%20therapy%20resistance%20and%20obesity&journal=Nat.%20Rev.%20Cancer&doi=10.1038%2Fs41568-021-00388-4&volume=21&pages=753-766&publication_year=2021&author=Hoy%2CAJ&author=Nagarajan%2CSR&author=Butler%2CLM) 
  1. Pope, L. E. & Dixon, S. J. Regulation of ferroptosis by lipid metabolism. Trends Cell Biol. 33, 1077–1087 (2023).
[Article](https://doi.org/10.1016%2Fj.tcb.2023.05.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37407304)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVCks7fO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20ferroptosis%20by%20lipid%20metabolism&journal=Trends%20Cell%20Biol.&doi=10.1016%2Fj.tcb.2023.05.003&volume=33&pages=1077-1087&publication_year=2023&author=Pope%2CLE&author=Dixon%2CSJ) 
  1. Kim, J. et al. Iron loading impairs lipoprotein lipase activity and promotes hypertriglyceridemia. FASEB J. 27, 1657–1663 (2013).
[Article](https://doi.org/10.1096%2Ffj.12-224386)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23241313)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606537)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXmtFegtLY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20loading%20impairs%20lipoprotein%20lipase%20activity%20and%20promotes%20hypertriglyceridemia&journal=FASEB%20J.&doi=10.1096%2Ffj.12-224386&volume=27&pages=1657-1663&publication_year=2013&author=Kim%2CJ) 
  1. Kim, S. H. et al. High consumption of iron exacerbates hyperlipidemia, atherosclerosis, and female sterility in zebrafish via acceleration of glycation and degradation of serum lipoproteins. Nutrients 9, 960 (2017).
  1. Mateo-Gallego, R. et al. Serum ferritin is a major determinant of lipid phenotype in familial combined hyperlipidemia and familial hypertriglyceridemia. Metabolism 59, 154–158 (2010).
[Article](https://doi.org/10.1016%2Fj.metabol.2009.06.021)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19913843)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXntlGjsw%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Serum%20ferritin%20is%20a%20major%20determinant%20of%20lipid%20phenotype%20in%20familial%20combined%20hyperlipidemia%20and%20familial%20hypertriglyceridemia&journal=Metabolism&doi=10.1016%2Fj.metabol.2009.06.021&volume=59&pages=154-158&publication_year=2010&author=Mateo-Gallego%2CR) 
  1. Zhou, B., Ren, H., Zhou, X. & Yuan, G. Associations of iron status with apolipoproteins and lipid ratios: a cross-sectional study from the China Health and Nutrition Survey. Lipids Health Dis. 19, 140 (2020).
[Article](https://link.springer.com/doi/10.1186/s12944-020-01312-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32546165)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7298938)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXht1Cqs7rM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Associations%20of%20iron%20status%20with%20apolipoproteins%20and%20lipid%20ratios%3A%20a%20cross-sectional%20study%20from%20the%20China%20Health%20and%20Nutrition%20Survey&journal=Lipids%20Health%20Dis.&doi=10.1186%2Fs12944-020-01312-9&volume=19&publication_year=2020&author=Zhou%2CB&author=Ren%2CH&author=Zhou%2CX&author=Yuan%2CG) 
  1. Li, G. et al. Relationship between serum ferritin level and dyslipidemia in US adults based on data from the national health and nutrition examination surveys 2017 to 2020. Nutrients 15 (2023).
  1. Varela, R. et al. Hyperglycemia and hyperlipidemia can induce morphophysiological changes in rat cardiac cell line. Biochem. Biophys. Rep. 26, 100983 (2021).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33912691)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8063753)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XitVaru77N)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hyperglycemia%20and%20hyperlipidemia%20can%20induce%20morphophysiological%20changes%20in%20rat%20cardiac%20cell%20line&journal=Biochem.%20Biophys.%20Rep.&volume=26&publication_year=2021&author=Varela%2CR) 
  1. Wu, X. et al. DiDang decoction improves mitochondrial function and lipid metabolism via the HIF-1 signaling pathway to treat atherosclerosis and hyperlipidemia. J. Ethnopharmacol. 308, 116289 (2023).
[Article](https://doi.org/10.1016%2Fj.jep.2023.116289)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36822344)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXktVaqu7Y%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=DiDang%20decoction%20improves%20mitochondrial%20function%20and%20lipid%20metabolism%20via%20the%20HIF-1%20signaling%20pathway%20to%20treat%20atherosclerosis%20and%20hyperlipidemia&journal=J.%20Ethnopharmacol.&doi=10.1016%2Fj.jep.2023.116289&volume=308&publication_year=2023&author=Wu%2CX) 
  1. Fan, Y. et al. Primordial drivers of diabetes heart disease: comprehensive insights into insulin resistance. Diabetes Metab. J. 48, 19–36 (2024).
[Article](https://doi.org/10.4093%2Fdmj.2023.0110)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38173376)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10850268)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Primordial%20drivers%20of%20diabetes%20heart%20disease%3A%20comprehensive%20insights%20into%20insulin%20resistance&journal=Diabetes%20Metab.%20J.&doi=10.4093%2Fdmj.2023.0110&volume=48&pages=19-36&publication_year=2024&author=Fan%2CY) 
  1. Ma, W. Q., Sun, X. J., Zhu, Y. & Liu, N. F. Metformin attenuates hyperlipidaemia-associated vascular calcification through anti-ferroptotic effects. Free Radic. Biol. Med. 165, 229–242 (2021).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2021.01.033)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33513420)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXjs1ynu78%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metformin%20attenuates%20hyperlipidaemia-associated%20vascular%20calcification%20through%20anti-ferroptotic%20effects&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2021.01.033&volume=165&pages=229-242&publication_year=2021&author=Ma%2CWQ&author=Sun%2CXJ&author=Zhu%2CY&author=Liu%2CNF) 
  1. Chen, Z., Sun, X., Li, X. & Liu, N. Oleoylethanolamide alleviates hyperlipidaemia-mediated vascular calcification via attenuating mitochondrial DNA stress triggered autophagy-dependent ferroptosis by activating PPARalpha. Biochem. Pharm. 208, 115379 (2023).
[Article](https://doi.org/10.1016%2Fj.bcp.2022.115379)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36525991)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XjtFaiurnE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oleoylethanolamide%20alleviates%20hyperlipidaemia-mediated%20vascular%20calcification%20via%20attenuating%20mitochondrial%20DNA%20stress%20triggered%20autophagy-dependent%20ferroptosis%20by%20activating%20PPARalpha&journal=Biochem.%20Pharm.&doi=10.1016%2Fj.bcp.2022.115379&volume=208&publication_year=2023&author=Chen%2CZ&author=Sun%2CX&author=Li%2CX&author=Liu%2CN) 
  1. Yang, Z. et al. Antiferroptosis therapy alleviated the development of atherosclerosis. MedComm 5, e520 (2024).
[Article](https://doi.org/10.1002%2Fmco2.520)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38576455)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10993356)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhtFSksL%2FI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Antiferroptosis%20therapy%20alleviated%20the%20development%20of%20atherosclerosis&journal=MedComm&doi=10.1002%2Fmco2.520&volume=5&publication_year=2024&author=Yang%2CZ) 
  1. Zhang, J. et al. Echinatin maintains glutathione homeostasis in vascular smooth muscle cells to protect against matrix remodeling and arterial stiffening. Matrix Biol. 119, 1–18 (2023).
[Article](https://doi.org/10.1016%2Fj.matbio.2023.03.007)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36958467)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXmsVers7o%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Echinatin%20maintains%20glutathione%20homeostasis%20in%20vascular%20smooth%20muscle%20cells%20to%20protect%20against%20matrix%20remodeling%20and%20arterial%20stiffening&journal=Matrix%20Biol.&doi=10.1016%2Fj.matbio.2023.03.007&volume=119&pages=1-18&publication_year=2023&author=Zhang%2CJ) 
  1. Yang, L. et al. Scavenger receptor class B Type I deficiency induces iron overload and ferroptosis in renal tubular epithelial cells via hypoxia-inducible factor-1alpha/transferrin receptor 1 signaling pathway. Antioxid. Redox Signal. 41, 56-73 (2024).
  1. Zhang, M. et al. Effect of tetramethylpyrazine and hyperlipidemia on hepcidin homeostasis in mice. Int. J. Mol. Med. 43, 501–506 (2019).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30387806)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhtVKlsb%2FN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effect%20of%20tetramethylpyrazine%20and%20hyperlipidemia%20on%20hepcidin%20homeostasis%20in%20mice&journal=Int.%20J.%20Mol.%20Med.&volume=43&pages=501-506&publication_year=2019&author=Zhang%2CM) 
  1. Xiang, X. et al. Liproxstatin-1 attenuates acute hypertriglyceridemic pancreatitis through inhibiting ferroptosis in rats. Sci. Rep. 14, 9548 (2024).
[Article](https://doi.org/10.1038%2Fs41598-024-60159-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38664508)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11045844)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXptlSktLw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Liproxstatin-1%20attenuates%20acute%20hypertriglyceridemic%20pancreatitis%20through%20inhibiting%20ferroptosis%20in%20rats&journal=Sci.%20Rep.&doi=10.1038%2Fs41598-024-60159-7&volume=14&publication_year=2024&author=Xiang%2CX) 
  1. Yang, M. et al. Puerarin ameliorates metabolic dysfunction-associated fatty liver disease by inhibiting ferroptosis and inflammation. Lipids Health Dis. 22, 202 (2023).
[Article](https://link.springer.com/doi/10.1186/s12944-023-01969-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38001459)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10668385)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXisFGisLjE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Puerarin%20ameliorates%20metabolic%20dysfunction-associated%20fatty%20liver%20disease%20by%20inhibiting%20ferroptosis%20and%20inflammation&journal=Lipids%20Health%20Dis.&doi=10.1186%2Fs12944-023-01969-y&volume=22&publication_year=2023&author=Yang%2CM) 
  1. El Ayed, M. et al. Protective effects of grape seed and skin extract against high-fat-diet-induced lipotoxicity in rat lung. Lipids Health Dis. 16, 174 (2017).
[Article](https://link.springer.com/doi/10.1186/s12944-017-0561-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28903761)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5598067)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Protective%20effects%20of%20grape%20seed%20and%20skin%20extract%20against%20high-fat-diet-induced%20lipotoxicity%20in%20rat%20lung&journal=Lipids%20Health%20Dis.&doi=10.1186%2Fs12944-017-0561-z&volume=16&publication_year=2017&author=El%20Ayed%2CM) 
  1. He, L. P., Zhou, Z. X. & Li, C. P. Narrative review of ferroptosis in obesity. J. Cell Mol. Med. 27, 920–926 (2023).
[Article](https://doi.org/10.1111%2Fjcmm.17701)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36871273)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10064023)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Narrative%20review%20of%20ferroptosis%20in%20obesity&journal=J.%20Cell%20Mol.%20Med.&doi=10.1111%2Fjcmm.17701&volume=27&pages=920-926&publication_year=2023&author=He%2CLP&author=Zhou%2CZX&author=Li%2CCP) 
  1. Gonzalez-Dominguez, A. et al. Iron metabolism in obesity and metabolic syndrome. Int. J. Mol. Sci. 21, 5529 (2020).
  1. Lecube, A. et al. Iron deficiency in obese postmenopausal women. Obesity 14, 1724–1730 (2006).
[Article](https://doi.org/10.1038%2Foby.2006.198)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17062801)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28Xht1ehtbnK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20deficiency%20in%20obese%20postmenopausal%20women&journal=Obesity&doi=10.1038%2Foby.2006.198&volume=14&pages=1724-1730&publication_year=2006&author=Lecube%2CA) 
  1. Yanoff, L. B. et al. Inflammation and iron deficiency in the hypoferremia of obesity. Int. J. Obes. 31, 1412–1419 (2007).
[Article](https://doi.org/10.1038%2Fsj.ijo.0803625)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXpsF2qur4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inflammation%20and%20iron%20deficiency%20in%20the%20hypoferremia%20of%20obesity&journal=Int.%20J.%20Obes.&doi=10.1038%2Fsj.ijo.0803625&volume=31&pages=1412-1419&publication_year=2007&author=Yanoff%2CLB) 
  1. Qiu, F. et al. The role of iron metabolism in chronic diseases related to obesity. Mol. Med. 28, 130 (2022).
[Article](https://link.springer.com/doi/10.1186/s10020-022-00558-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36335331)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9636637)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XivVWqtLzM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20iron%20metabolism%20in%20chronic%20diseases%20related%20to%20obesity&journal=Mol.%20Med.&doi=10.1186%2Fs10020-022-00558-6&volume=28&publication_year=2022&author=Qiu%2CF) 
  1. Moore Heslin, A. et al. Risk of iron overload in obesity and implications in metabolic health. Nutrients 13,1539 (2021).
  1. Gotardo, E. M. et al. Mice that are fed a high-fat diet display increased hepcidin expression in adipose tissue. J. Nutr. Sci. Vitaminol. 59, 454–461 (2013).
[Article](https://doi.org/10.3177%2Fjnsv.59.454)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24418880)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhslGht7rM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mice%20that%20are%20fed%20a%20high-fat%20diet%20display%20increased%20hepcidin%20expression%20in%20adipose%20tissue&journal=J.%20Nutr.%20Sci.%20Vitaminol.&doi=10.3177%2Fjnsv.59.454&volume=59&pages=454-461&publication_year=2013&author=Gotardo%2CEM) 
  1. Bekri, S. et al. Increased adipose tissue expression of hepcidin in severe obesity is independent from diabetes and NASH. Gastroenterology 131, 788–796 (2006).
[Article](https://doi.org/10.1053%2Fj.gastro.2006.07.007)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16952548)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XhtVKqs7nJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Increased%20adipose%20tissue%20expression%20of%20hepcidin%20in%20severe%20obesity%20is%20independent%20from%20diabetes%20and%20NASH&journal=Gastroenterology&doi=10.1053%2Fj.gastro.2006.07.007&volume=131&pages=788-796&publication_year=2006&author=Bekri%2CS) 
  1. Li, W. et al. Identifying ferroptosis-related genes associated with weight loss outcomes and regulation of adipocyte microenvironment. Mol. Nutr. Food Res. 67, e2300168 (2023).
[Article](https://doi.org/10.1002%2Fmnfr.202300168)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37599272)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identifying%20ferroptosis-related%20genes%20associated%20with%20weight%20loss%20outcomes%20and%20regulation%20of%20adipocyte%20microenvironment&journal=Mol.%20Nutr.%20Food%20Res.&doi=10.1002%2Fmnfr.202300168&volume=67&publication_year=2023&author=Li%2CW) 
  1. Zhang, Y. et al. High-altitude hypoxia exposure induces iron overload and ferroptosis in adipose tissue. Antioxidants 11, 2367 (2022).
  1. Lu, J. et al. Skeletal muscle cystathionine gamma-lyase deficiency promotes obesity and insulin resistance and results in hyperglycemia and skeletal muscle injury upon HFD in mice. Redox Rep. 29, 2347139 (2024).
[Article](https://doi.org/10.1080%2F13510002.2024.2347139)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38718286)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Skeletal%20muscle%20cystathionine%20gamma-lyase%20deficiency%20promotes%20obesity%20and%20insulin%20resistance%20and%20results%20in%20hyperglycemia%20and%20skeletal%20muscle%20injury%20upon%20HFD%20in%20mice&journal=Redox%20Rep.&doi=10.1080%2F13510002.2024.2347139&volume=29&publication_year=2024&author=Lu%2CJ) 
  1. Zhou, J. et al. The transcriptome reveals the molecular regulatory network of primordial follicle depletion in obese mice. Fertil. Steril. 120, 899–910 (2023).
[Article](https://doi.org/10.1016%2Fj.fertnstert.2023.05.165)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37247688)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVKntLvM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20transcriptome%20reveals%20the%20molecular%20regulatory%20network%20of%20primordial%20follicle%20depletion%20in%20obese%20mice&journal=Fertil.%20Steril.&doi=10.1016%2Fj.fertnstert.2023.05.165&volume=120&pages=899-910&publication_year=2023&author=Zhou%2CJ) 
  1. Schwarzler, J. et al. Adipocyte GPX4 protects against inflammation, hepatic insulin resistance and metabolic dysregulation. Int. J. Obes. 46, 951–959 (2022).
[Article](https://doi.org/10.1038%2Fs41366-022-01064-9)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Adipocyte%20GPX4%20protects%20against%20inflammation%2C%20hepatic%20insulin%20resistance%20and%20metabolic%20dysregulation&journal=Int.%20J.%20Obes.&doi=10.1038%2Fs41366-022-01064-9&volume=46&pages=951-959&publication_year=2022&author=Schwarzler%2CJ) 
  1. Zhang, X., Bao, J., Zhang, Y. & Wang, X. Alpha-linolenic acid ameliorates cognitive impairment and liver damage caused by obesity. Diabetes Metab. Syndr. Obes. 17, 981–995 (2024).
[Article](https://doi.org/10.2147%2FDMSO.S434671)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38435630)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10909331)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXltl2hsro%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alpha-linolenic%20acid%20ameliorates%20cognitive%20impairment%20and%20liver%20damage%20caused%20by%20obesity&journal=Diabetes%20Metab.%20Syndr.%20Obes.&doi=10.2147%2FDMSO.S434671&volume=17&pages=981-995&publication_year=2024&author=Zhang%2CX&author=Bao%2CJ&author=Zhang%2CY&author=Wang%2CX) 
  1. Zhong, X. et al. Dynamic transcriptome analysis of the muscles in high-fat diet-induced obese zebrafish (Danio rerio) under 5-HT treatment. Gene 819, 146265 (2022).
[Article](https://doi.org/10.1016%2Fj.gene.2022.146265)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35121026)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XjtFSqu7s%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dynamic%20transcriptome%20analysis%20of%20the%20muscles%20in%20high-fat%20diet-induced%20obese%20zebrafish%20%28Danio%20rerio%29%20under%205-HT%20treatment&journal=Gene&doi=10.1016%2Fj.gene.2022.146265&volume=819&publication_year=2022&author=Zhong%2CX) 
  1. Wan, Y. et al. Nuciferine, an active ingredient derived from lotus leaf, lights up the way for the potential treatment of obesity and obesity-related diseases. Pharm. Res. 175, 106002 (2022).
[Article](https://doi.org/10.1016%2Fj.phrs.2021.106002)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XovVajsLg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nuciferine%2C%20an%20active%20ingredient%20derived%20from%20lotus%20leaf%2C%20lights%20up%20the%20way%20for%20the%20potential%20treatment%20of%20obesity%20and%20obesity-related%20diseases&journal=Pharm.%20Res.&doi=10.1016%2Fj.phrs.2021.106002&volume=175&publication_year=2022&author=Wan%2CY) 
  1. Kordi, N. et al. Ferroptosis and aerobic training in ageing. Clin. Hemorheol. Microcirc. 87, 347–366 (2024).
[Article](https://doi.org/10.3233%2FCH-232076)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38306027)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhs1yjsrfO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20and%20aerobic%20training%20in%20ageing&journal=Clin.%20Hemorheol.%20Microcirc.&doi=10.3233%2FCH-232076&volume=87&pages=347-366&publication_year=2024&author=Kordi%2CN) 
  1. Yang, Y. et al. Electroacupuncture reduces inflammatory bowel disease in obese mice by activating the nrf2/ho-1 signaling pathways and repairing the intestinal barrier. Diabetes Metab. Syndr. Obes. 17, 435–452 (2024).
[Article](https://doi.org/10.2147%2FDMSO.S449112)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38299195)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10829509)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXjtlyqtr0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Electroacupuncture%20reduces%20inflammatory%20bowel%20disease%20in%20obese%20mice%20by%20activating%20the%20nrf2%2Fho-1%20signaling%20pathways%20and%20repairing%20the%20intestinal%20barrier&journal=Diabetes%20Metab.%20Syndr.%20Obes.&doi=10.2147%2FDMSO.S449112&volume=17&pages=435-452&publication_year=2024&author=Yang%2CY) 
  1. Krishan, S. Correlation between non-alcoholic fatty liver disease (NAFLD) and dyslipidemia in type 2 diabetes. Diabetes Metab. Syndr. 10, S77–S81 (2016).
[Article](https://doi.org/10.1016%2Fj.dsx.2016.01.034)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26810159)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Correlation%20between%20non-alcoholic%20fatty%20liver%20disease%20%28NAFLD%29%20and%20dyslipidemia%20in%20type%202%20diabetes&journal=Diabetes%20Metab.%20Syndr.&doi=10.1016%2Fj.dsx.2016.01.034&volume=10&pages=S77-S81&publication_year=2016&author=Krishan%2CS) 
  1. Wang, S. et al. An overview of ferroptosis in non-alcoholic fatty liver disease. Biomed. Pharmacother. 153, 113374 (2022).
[Article](https://doi.org/10.1016%2Fj.biopha.2022.113374)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35834990)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xit1Kiu7nP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=An%20overview%20of%20ferroptosis%20in%20non-alcoholic%20fatty%20liver%20disease&journal=Biomed.%20Pharmacother.&doi=10.1016%2Fj.biopha.2022.113374&volume=153&publication_year=2022&author=Wang%2CS) 
  1. Wu, S. et al. Macrophage extracellular traps aggravate iron overload-related liver ischaemia/reperfusion injury. Br. J. Pharm. 178, 3783–3796 (2021).
[Article](https://doi.org/10.1111%2Fbph.15518)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtlWjsL7P)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Macrophage%20extracellular%20traps%20aggravate%20iron%20overload-related%20liver%20ischaemia%2Freperfusion%20injury&journal=Br.%20J.%20Pharm.&doi=10.1111%2Fbph.15518&volume=178&pages=3783-3796&publication_year=2021&author=Wu%2CS) 
  1. Dai, X., Zhang, R. & Wang, B. Contribution of classification based on ferroptosis-related genes to the heterogeneity of MAFLD. BMC Gastroenterol. 22, 55 (2022).
[Article](https://link.springer.com/doi/10.1186/s12876-022-02137-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35144542)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8830092)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XotFKks7g%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Contribution%20of%20classification%20based%20on%20ferroptosis-related%20genes%20to%20the%20heterogeneity%20of%20MAFLD&journal=BMC%20Gastroenterol.&doi=10.1186%2Fs12876-022-02137-9&volume=22&publication_year=2022&author=Dai%2CX&author=Zhang%2CR&author=Wang%2CB) 
  1. Shen, J. et al. Essentiality of SLC7A11-mediated nonessential amino acids in MASLD. Sci. Bull. https://doi.org/10.1016/j.scib.2024.09.019 (2024).
  1. Loguercio, C. et al. Non-alcoholic fatty liver disease in an area of southern Italy: main clinical, histological, and pathophysiological aspects. J. Hepatol. 35, 568–574 (2001).
[Article](https://doi.org/10.1016%2FS0168-8278%2801%2900192-1)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11690701)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD3MnktVyhtg%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Non-alcoholic%20fatty%20liver%20disease%20in%20an%20area%20of%20southern%20Italy%3A%20main%20clinical%2C%20histological%2C%20and%20pathophysiological%20aspects&journal=J.%20Hepatol.&doi=10.1016%2FS0168-8278%2801%2900192-1&volume=35&pages=568-574&publication_year=2001&author=Loguercio%2CC) 
  1. Jia, M. et al. Ferroptosis as a new therapeutic opportunity for nonviral liver disease. Eur. J. Pharm. 908, 174319 (2021).
[Article](https://doi.org/10.1016%2Fj.ejphar.2021.174319)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhsFCns7jO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20as%20a%20new%20therapeutic%20opportunity%20for%20nonviral%20liver%20disease&journal=Eur.%20J.%20Pharm.&doi=10.1016%2Fj.ejphar.2021.174319&volume=908&publication_year=2021&author=Jia%2CM) 
  1. Sun, J. et al. Fatty acid binding protein 5 suppression attenuates obesity-induced hepatocellular carcinoma by promoting ferroptosis and intratumoral immune rewiring. Nat. Metab. 6, 741–763 (2024).
[Article](https://doi.org/10.1038%2Fs42255-024-01019-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38664583)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXpsl2htbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Fatty%20acid%20binding%20protein%205%20suppression%20attenuates%20obesity-induced%20hepatocellular%20carcinoma%20by%20promoting%20ferroptosis%20and%20intratumoral%20immune%20rewiring&journal=Nat.%20Metab.&doi=10.1038%2Fs42255-024-01019-6&volume=6&pages=741-763&publication_year=2024&author=Sun%2CJ) 
  1. Fu, J. T. et al. Targeting EFHD2 inhibits interferon-gamma signaling and ameliorates non-alcoholic steatohepatitis. J. Hepatol. 81, 389-403 (2024).
  1. Franchini, M. et al. Safety and efficacy of subcutaneous bolus injection of deferoxamine in adult patients with iron overload. Blood 95, 2776–2779 (2000).
[Article](https://doi.org/10.1182%2Fblood.V95.9.2776.009k26_2776_2779)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10779420)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXivVarurs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Safety%20and%20efficacy%20of%20subcutaneous%20bolus%20injection%20of%20deferoxamine%20in%20adult%20patients%20with%20iron%20overload&journal=Blood&doi=10.1182%2Fblood.V95.9.2776.009k26_2776_2779&volume=95&pages=2776-2779&publication_year=2000&author=Franchini%2CM) 
  1. Aydinok, Y. et al. Effects of deferasirox-deferoxamine on myocardial and liver iron in patients with severe transfusional iron overload. Blood 125, 3868–3877 (2015).
[Article](https://doi.org/10.1182%2Fblood-2014-07-586677)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25934475)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4490296)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFCmsLjP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effects%20of%20deferasirox-deferoxamine%20on%20myocardial%20and%20liver%20iron%20in%20patients%20with%20severe%20transfusional%20iron%20overload&journal=Blood&doi=10.1182%2Fblood-2014-07-586677&volume=125&pages=3868-3877&publication_year=2015&author=Aydinok%2CY) 
  1. Olivieri, N. F. et al. Long-term safety and effectiveness of iron-chelation therapy with deferiprone for thalassemia major. N. Engl. J. Med. 339, 417–423 (1998).
[Article](https://doi.org/10.1056%2FNEJM199808133390701)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9700174)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1cXlslWgtL8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Long-term%20safety%20and%20effectiveness%20of%20iron-chelation%20therapy%20with%20deferiprone%20for%20thalassemia%20major&journal=N.%20Engl.%20J.%20Med.&doi=10.1056%2FNEJM199808133390701&volume=339&pages=417-423&publication_year=1998&author=Olivieri%2CNF) 
  1. Kong, Z., Liu, R. & Cheng, Y. Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed. Pharmacother. 109, 2043–2053 (2019).
[Article](https://doi.org/10.1016%2Fj.biopha.2018.11.030)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30551460)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXitlGgtb%2FK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Artesunate%20alleviates%20liver%20fibrosis%20by%20regulating%20ferroptosis%20signaling%20pathway&journal=Biomed.%20Pharmacother.&doi=10.1016%2Fj.biopha.2018.11.030&volume=109&pages=2043-2053&publication_year=2019&author=Kong%2CZ&author=Liu%2CR&author=Cheng%2CY) 
  1. Nobuta, H. et al. Oligodendrocyte death in pelizaeus-merzbacher disease is rescued by iron chelation. Cell Stem Cell 25, 531–541.e6 (2019).
[Article](https://doi.org/10.1016%2Fj.stem.2019.09.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31585094)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8282124)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhvFers77N)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oligodendrocyte%20death%20in%20pelizaeus-merzbacher%20disease%20is%20rescued%20by%20iron%20chelation&journal=Cell%20Stem%20Cell&doi=10.1016%2Fj.stem.2019.09.003&volume=25&pages=531-541.e6&publication_year=2019&author=Nobuta%2CH) 
  1. Tsurusaki, S. et al. Hepatic ferroptosis plays an important role as the trigger for initiating inflammation in nonalcoholic steatohepatitis. Cell Death Dis. 10, 449 (2019).
[Article](https://doi.org/10.1038%2Fs41419-019-1678-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31209199)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6579767)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepatic%20ferroptosis%20plays%20an%20important%20role%20as%20the%20trigger%20for%20initiating%20inflammation%20in%20nonalcoholic%20steatohepatitis&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-019-1678-y&volume=10&publication_year=2019&author=Tsurusaki%2CS) 
  1. Tao, L. et al. Integrative clinical and preclinical studies identify FerroTerminator1 as a potent therapeutic drug for MASH. Cell Metabolism. https://doi.org/10.1016/j.cmet.2024.07.013 (2024).
  1. Li, X. et al. Targeting ferroptosis alleviates methionine-choline deficient (MCD)-diet induced NASH by suppressing liver lipotoxicity. Liver Int 40, 1378–1394 (2020).
[Article](https://doi.org/10.1111%2Fliv.14428)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32145145)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtVOmtb3M)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20ferroptosis%20alleviates%20methionine-choline%20deficient%20%28MCD%29-diet%20induced%20NASH%20by%20suppressing%20liver%20lipotoxicity&journal=Liver%20Int&doi=10.1111%2Fliv.14428&volume=40&pages=1378-1394&publication_year=2020&author=Li%2CX) 
  1. Qi, J. et al. Ferroptosis affects the progression of nonalcoholic steatohepatitis via the modulation of lipid peroxidation-mediated cell death in mice. Am. J. Pathol. 190, 68–81 (2020).
[Article](https://doi.org/10.1016%2Fj.ajpath.2019.09.011)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31610178)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitFGnsb7O)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20affects%20the%20progression%20of%20nonalcoholic%20steatohepatitis%20via%20the%20modulation%20of%20lipid%20peroxidation-mediated%20cell%20death%20in%20mice&journal=Am.%20J.%20Pathol.&doi=10.1016%2Fj.ajpath.2019.09.011&volume=190&pages=68-81&publication_year=2020&author=Qi%2CJ) 
  1. Anthonymuthu, T. S. et al. Resolving the paradox of ferroptotic cell death: ferrostatin-1 binds to 15LOX/PEBP1 complex, suppresses generation of peroxidized ETE-PE, and protects against ferroptosis. Redox Biol. 38, 101744 (2021).
[Article](https://doi.org/10.1016%2Fj.redox.2020.101744)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33126055)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXit12ht77J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Resolving%20the%20paradox%20of%20ferroptotic%20cell%20death%3A%20ferrostatin-1%20binds%20to%2015LOX%2FPEBP1%20complex%2C%20suppresses%20generation%20of%20peroxidized%20ETE-PE%2C%20and%20protects%20against%20ferroptosis&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2020.101744&volume=38&publication_year=2021&author=Anthonymuthu%2CTS) 
  1. Zhu, Z. et al. Thymosin beta 4 alleviates non-alcoholic fatty liver by inhibiting ferroptosis via up-regulation of GPX4. Eur. J. Pharm. 908, 174351 (2021).
[Article](https://doi.org/10.1016%2Fj.ejphar.2021.174351)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhs1Shu73I)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Thymosin%20beta%204%20alleviates%20non-alcoholic%20fatty%20liver%20by%20inhibiting%20ferroptosis%20via%20up-regulation%20of%20GPX4&journal=Eur.%20J.%20Pharm.&doi=10.1016%2Fj.ejphar.2021.174351&volume=908&publication_year=2021&author=Zhu%2CZ) 
  1. Tong, J. et al. Targeting a novel inducible GPX4 alternative isoform to alleviate ferroptosis and treat metabolic-associated fatty liver disease. Acta Pharm. Sin. B 12, 3650–3666 (2022).
[Article](https://doi.org/10.1016%2Fj.apsb.2022.02.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36176906)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9513461)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhtlWns7jN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20a%20novel%20inducible%20GPX4%20alternative%20isoform%20to%20alleviate%20ferroptosis%20and%20treat%20metabolic-associated%20fatty%20liver%20disease&journal=Acta%20Pharm.%20Sin.%20B&doi=10.1016%2Fj.apsb.2022.02.003&volume=12&pages=3650-3666&publication_year=2022&author=Tong%2CJ) 
  1. Carlson, B. A. et al. Glutathione peroxidase 4 and vitamin E cooperatively prevent hepatocellular degeneration. Redox Biol. 9, 22–31 (2016).
[Article](https://doi.org/10.1016%2Fj.redox.2016.05.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27262435)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4900515)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xpt1eksLw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Glutathione%20peroxidase%204%20and%20vitamin%20E%20cooperatively%20prevent%20hepatocellular%20degeneration&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2016.05.003&volume=9&pages=22-31&publication_year=2016&author=Carlson%2CBA) 
  1. Lavine, J. E. et al. Effect of vitamin E or metformin for treatment of nonalcoholic fatty liver disease in children and adolescents: the TONIC randomized controlled trial. JAMA 305, 1659–1668 (2011).
[Article](https://doi.org/10.1001%2Fjama.2011.520)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21521847)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3110082)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXlsVyit7Y%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effect%20of%20vitamin%20E%20or%20metformin%20for%20treatment%20of%20nonalcoholic%20fatty%20liver%20disease%20in%20children%20and%20adolescents%3A%20the%20TONIC%20randomized%20controlled%20trial&journal=JAMA&doi=10.1001%2Fjama.2011.520&volume=305&pages=1659-1668&publication_year=2011&author=Lavine%2CJE) 
  1. Sanyal, A. J. et al. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. N. Engl. J. Med. 362, 1675–1685 (2010).
[Article](https://doi.org/10.1056%2FNEJMoa0907929)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20427778)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2928471)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXls1Oltr4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pioglitazone%2C%20vitamin%20E%2C%20or%20placebo%20for%20nonalcoholic%20steatohepatitis&journal=N.%20Engl.%20J.%20Med.&doi=10.1056%2FNEJMoa0907929&volume=362&pages=1675-1685&publication_year=2010&author=Sanyal%2CAJ) 
  1. Saryusz-Wolska, M. et al. Rosiglitazone treatment in nondiabetic subjects with nonalcoholic fatty liver disease. Pol. Arch. Med. Wewn. 121, 61–66 (2011).
[Article](https://doi.org/10.20452%2Fpamw.1023)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21430606)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXpvVagtbc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Rosiglitazone%20treatment%20in%20nondiabetic%20subjects%20with%20nonalcoholic%20fatty%20liver%20disease&journal=Pol.%20Arch.%20Med.%20Wewn.&doi=10.20452%2Fpamw.1023&volume=121&pages=61-66&publication_year=2011&author=Saryusz-Wolska%2CM) 
  1. Wang, C. H., Leung, C. H., Liu, S. C. & Chung, C. H. Safety and effectiveness of rosiglitazone in type 2 diabetes patients with nonalcoholic Fatty liver disease. J. Formos. Med. Assoc. 105, 743–752 (2006).
[Article](https://doi.org/10.1016%2FS0929-6646%2809%2960202-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16959622)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7134933)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XhtFOrtrjO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Safety%20and%20effectiveness%20of%20rosiglitazone%20in%20type%202%20diabetes%20patients%20with%20nonalcoholic%20Fatty%20liver%20disease&journal=J.%20Formos.%20Med.%20Assoc.&doi=10.1016%2FS0929-6646%2809%2960202-3&volume=105&pages=743-752&publication_year=2006&author=Wang%2CCH&author=Leung%2CCH&author=Liu%2CSC&author=Chung%2CCH) 
  1. Wei, S. et al. Ferroptosis mediated by the interaction between Mfn2 and IREalpha promotes arsenic-induced nonalcoholic steatohepatitis. Environ. Res. 188, 109824 (2020).
[Article](https://doi.org/10.1016%2Fj.envres.2020.109824)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32593899)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXht1ymsb%2FP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20mediated%20by%20the%20interaction%20between%20Mfn2%20and%20IREalpha%20promotes%20arsenic-induced%20nonalcoholic%20steatohepatitis&journal=Environ.%20Res.&doi=10.1016%2Fj.envres.2020.109824&volume=188&publication_year=2020&author=Wei%2CS) 
  1. Zhang, Y. et al. Computational repositioning of dimethyl fumarate for treating alcoholic liver disease. Cell Death Dis. 11, 641 (2020).
[Article](https://doi.org/10.1038%2Fs41419-020-02890-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32811823)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7434920)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhs1yhu73O)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Computational%20repositioning%20of%20dimethyl%20fumarate%20for%20treating%20alcoholic%20liver%20disease&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-020-02890-3&volume=11&publication_year=2020&author=Zhang%2CY) 
  1. Kim, J. et al. The natural phytochemical dehydroabietic acid is an anti-aging reagent that mediates the direct activation of SIRT1. Mol. Cell Endocrinol. 412, 216–225 (2015).
[Article](https://doi.org/10.1016%2Fj.mce.2015.05.006)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25976661)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXos1emtrY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20natural%20phytochemical%20dehydroabietic%20acid%20is%20an%20anti-aging%20reagent%20that%20mediates%20the%20direct%20activation%20of%20SIRT1&journal=Mol.%20Cell%20Endocrinol.&doi=10.1016%2Fj.mce.2015.05.006&volume=412&pages=216-225&publication_year=2015&author=Kim%2CJ) 
  1. Kim, E. et al. Dehydroabietic acid suppresses inflammatory response via suppression of Src-, Syk-, and TAK1-mediated pathways. Int. J. Mol. Sci. 20, 1593 (2019).
  1. Gao, G. et al. Dehydroabietic acid improves nonalcoholic fatty liver disease through activating the Keap1/Nrf2-ARE signaling pathway to reduce ferroptosis. J. Nat. Med. 75, 540–552 (2021).
[Article](https://link.springer.com/doi/10.1007/s11418-021-01491-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33590347)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXlsVOqs7Y%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dehydroabietic%20acid%20improves%20nonalcoholic%20fatty%20liver%20disease%20through%20activating%20the%20Keap1%2FNrf2-ARE%20signaling%20pathway%20to%20reduce%20ferroptosis&journal=J.%20Nat.%20Med.&doi=10.1007%2Fs11418-021-01491-4&volume=75&pages=540-552&publication_year=2021&author=Gao%2CG) 
  1. Yang, Y. et al. Study on the attenuated effect of Ginkgolide B on ferroptosis in high fat diet induced nonalcoholic fatty liver disease. Toxicology 445, 152599 (2020).
[Article](https://doi.org/10.1016%2Fj.tox.2020.152599)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32976958)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitVGmurvN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Study%20on%20the%20attenuated%20effect%20of%20Ginkgolide%20B%20on%20ferroptosis%20in%20high%20fat%20diet%20induced%20nonalcoholic%20fatty%20liver%20disease&journal=Toxicology&doi=10.1016%2Fj.tox.2020.152599&volume=445&publication_year=2020&author=Yang%2CY) 
  1. Guan, Q. et al. Melatonin ameliorates hepatic ferroptosis in NAFLD by inhibiting ER stress via the MT2/cAMP/PKA/IRE1 signaling pathway. Int J. Biol. Sci. 19, 3937–3950 (2023).
[Article](https://doi.org/10.7150%2Fijbs.85883)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37564204)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10411470)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFOisr%2FN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Melatonin%20ameliorates%20hepatic%20ferroptosis%20in%20NAFLD%20by%20inhibiting%20ER%20stress%20via%20the%20MT2%2FcAMP%2FPKA%2FIRE1%20signaling%20pathway&journal=Int%20J.%20Biol.%20Sci.&doi=10.7150%2Fijbs.85883&volume=19&pages=3937-3950&publication_year=2023&author=Guan%2CQ) 
  1. Guo, T. et al. Liraglutide attenuates type 2 diabetes mellitus-associated non-alcoholic fatty liver disease by activating AMPK/ACC signaling and inhibiting ferroptosis. Mol. Med. 29, 132 (2023).
[Article](https://link.springer.com/doi/10.1186/s10020-023-00721-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37770820)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10540362)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitVaqsL%2FK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Liraglutide%20attenuates%20type%202%20diabetes%20mellitus-associated%20non-alcoholic%20fatty%20liver%20disease%20by%20activating%20AMPK%2FACC%20signaling%20and%20inhibiting%20ferroptosis&journal=Mol.%20Med.&doi=10.1186%2Fs10020-023-00721-7&volume=29&publication_year=2023&author=Guo%2CT) 
  1. Choi, J., Choi, H. & Chung, J. Icariin supplementation suppresses the markers of ferroptosis and attenuates the progression of nonalcoholic steatohepatitis in mice fed a methionine choline-deficient diet. Int. J. Mol. Sci. 24, 12510 (2023).
  1. Liu, H. et al. Zeaxanthin prevents ferroptosis by promoting mitochondrial function and inhibiting the p53 pathway in free fatty acid-induced HepG2 cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1868, 159287 (2023).
[Article](https://doi.org/10.1016%2Fj.bbalip.2023.159287)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36690321)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvVylsLc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Zeaxanthin%20prevents%20ferroptosis%20by%20promoting%20mitochondrial%20function%20and%20inhibiting%20the%20p53%20pathway%20in%20free%20fatty%20acid-induced%20HepG2%20cells&journal=Biochim.%20Biophys.%20Acta%20Mol.%20Cell%20Biol.%20Lipids&doi=10.1016%2Fj.bbalip.2023.159287&volume=1868&publication_year=2023&author=Liu%2CH) 
  1. Liu, B. et al. Enoyl coenzyme A hydratase 1 alleviates nonalcoholic steatohepatitis in mice by suppressing hepatic ferroptosis. Am. J. Physiol. Endocrinol. Metab. 320, E925–E937 (2021).
[Article](https://doi.org/10.1152%2Fajpendo.00614.2020)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33813878)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtlaktbrJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Enoyl%20coenzyme%20A%20hydratase%201%20alleviates%20nonalcoholic%20steatohepatitis%20in%20mice%20by%20suppressing%20hepatic%20ferroptosis&journal=Am.%20J.%20Physiol.%20Endocrinol.%20Metab.&doi=10.1152%2Fajpendo.00614.2020&volume=320&pages=E925-E937&publication_year=2021&author=Liu%2CB) 
  1. Wu, A. et al. Fibroblast growth factor 21 attenuates iron overload-induced liver injury and fibrosis by inhibiting ferroptosis. Redox Biol. 46, 102131 (2021).
[Article](https://doi.org/10.1016%2Fj.redox.2021.102131)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34530349)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8445902)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXitVantLzN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Fibroblast%20growth%20factor%2021%20attenuates%20iron%20overload-induced%20liver%20injury%20and%20fibrosis%20by%20inhibiting%20ferroptosis&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2021.102131&volume=46&publication_year=2021&author=Wu%2CA) 
  1. Gravallese, E. M. et al. What is rheumatoid arthritis? N. Engl. J. Med. 390, e32 (2024).
[Article](https://doi.org/10.1056%2FNEJMp2310178)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38598569)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=What%20is%20rheumatoid%20arthritis%3F&journal=N.%20Engl.%20J.%20Med.&doi=10.1056%2FNEJMp2310178&volume=390&publication_year=2024&author=Gravallese%2CEM) 
  1. Brown, P., Pratt, A. G. & Hyrich, K. L. Therapeutic advances in rheumatoid arthritis. BMJ 384, e070856 (2024).
[Article](https://doi.org/10.1136%2Fbmj-2022-070856)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38233032)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Therapeutic%20advances%20in%20rheumatoid%20arthritis&journal=BMJ&doi=10.1136%2Fbmj-2022-070856&volume=384&publication_year=2024&author=Brown%2CP&author=Pratt%2CAG&author=Hyrich%2CKL) 
  1. Xie, Z. et al. ROS-dependent lipid peroxidation and reliant antioxidant ferroptosis-suppressor-protein 1 in rheumatoid arthritis: a covert clue for potential therapy. Inflammation 44, 35–47 (2021).
[Article](https://link.springer.com/doi/10.1007/s10753-020-01338-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32920707)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhvVyqu77F)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ROS-dependent%20lipid%20peroxidation%20and%20reliant%20antioxidant%20ferroptosis-suppressor-protein%201%20in%20rheumatoid%20arthritis%3A%20a%20covert%20clue%20for%20potential%20therapy&journal=Inflammation&doi=10.1007%2Fs10753-020-01338-2&volume=44&pages=35-47&publication_year=2021&author=Xie%2CZ) 
  1. Pelissier, A. et al. Gene network analyses identify co-regulated transcription factors and BACH1 as a key driver in rheumatoid arthritis fibroblast-like synoviocytes. bioRxiv (2024).
  1. Walker, E. M. Jr. & Walker, S. M. Effects of iron overload on the immune system. Ann. Clin. Lab Sci. 30, 354–365 (2000).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11045759)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXns1Olsbk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effects%20of%20iron%20overload%20on%20the%20immune%20system&journal=Ann.%20Clin.%20Lab%20Sci.&volume=30&pages=354-365&publication_year=2000&author=Walker%2CEM&author=Walker%2CSM) 
  1. Baker, J. F. & Ghio, A. J. Iron homoeostasis in rheumatic disease. Rheumatology 48, 1339–1344 (2009).
[Article](https://doi.org/10.1093%2Frheumatology%2Fkep221)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19628641)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXksVyjsA%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20homoeostasis%20in%20rheumatic%20disease&journal=Rheumatology&doi=10.1093%2Frheumatology%2Fkep221&volume=48&pages=1339-1344&publication_year=2009&author=Baker%2CJF&author=Ghio%2CAJ) 
  1. Pantopoulos, K., Porwal, S. K., Tartakoff, A. & Devireddy, L. Mechanisms of mammalian iron homeostasis. Biochemistry 51, 5705–5724 (2012).
[Article](https://doi.org/10.1021%2Fbi300752r)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22703180)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xos1Smtbc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mechanisms%20of%20mammalian%20iron%20homeostasis&journal=Biochemistry&doi=10.1021%2Fbi300752r&volume=51&pages=5705-5724&publication_year=2012&author=Pantopoulos%2CK&author=Porwal%2CSK&author=Tartakoff%2CA&author=Devireddy%2CL) 
  1. Yazar, M., Sarban, S., Kocyigit, A. & Isikan, U. E. Synovial fluid and plasma selenium, copper, zinc, and iron concentrations in patients with rheumatoid arthritis and osteoarthritis. Biol. Trace Elem. Res. 106, 123–132 (2005).
[Article](https://doi.org/10.1385%2FBTER%3A106%3A2%3A123)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16116244)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXps12htr0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Synovial%20fluid%20and%20plasma%20selenium%2C%20copper%2C%20zinc%2C%20and%20iron%20concentrations%20in%20patients%20with%20rheumatoid%20arthritis%20and%20osteoarthritis&journal=Biol.%20Trace%20Elem.%20Res.&doi=10.1385%2FBTER%3A106%3A2%3A123&volume=106&pages=123-132&publication_year=2005&author=Yazar%2CM&author=Sarban%2CS&author=Kocyigit%2CA&author=Isikan%2CUE) 
  1. Ahmadzadeh, N., Shingu, M. & Nobunaga, M. Iron-binding proteins and free iron in synovial fluids of rheumatoid arthritis patients. Clin. Rheumatol. 8, 345–351 (1989).
[Article](https://link.springer.com/doi/10.1007/BF02030347)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2805610)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK3c%2FjtFerug%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron-binding%20proteins%20and%20free%20iron%20in%20synovial%20fluids%20of%20rheumatoid%20arthritis%20patients&journal=Clin.%20Rheumatol.&doi=10.1007%2FBF02030347&volume=8&pages=345-351&publication_year=1989&author=Ahmadzadeh%2CN&author=Shingu%2CM&author=Nobunaga%2CM) 
  1. Dabbagh, A. J., Blake, D. R. & Morris, C. J. Effect of iron complexes on adjuvant arthritis in rats. Ann. Rheum. Dis. 51, 516–521 (1992).
[Article](https://doi.org/10.1136%2Fard.51.4.516)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1586252)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1004704)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK38XksVGqsb4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effect%20of%20iron%20complexes%20on%20adjuvant%20arthritis%20in%20rats&journal=Ann.%20Rheum.%20Dis.&doi=10.1136%2Fard.51.4.516&volume=51&pages=516-521&publication_year=1992&author=Dabbagh%2CAJ&author=Blake%2CDR&author=Morris%2CCJ) 
  1. Danks, L. et al. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Ann. Rheum. Dis. 75, 1187–1195 (2016).
[Article](https://doi.org/10.1136%2Fannrheumdis-2014-207137)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26025971)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXivV2qtrs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=RANKL%20expressed%20on%20synovial%20fibroblasts%20is%20primarily%20responsible%20for%20bone%20erosions%20during%20joint%20inflammation&journal=Ann.%20Rheum.%20Dis.&doi=10.1136%2Fannrheumdis-2014-207137&volume=75&pages=1187-1195&publication_year=2016&author=Danks%2CL) 
  1. Hassan, S. Z. et al. Oxidative stress in systemic lupus erythematosus and rheumatoid arthritis patients: relationship to disease manifestations and activity. Int. J. Rheum. Dis. 14, 325–331 (2011).
[Article](https://doi.org/10.1111%2Fj.1756-185X.2011.01630.x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22004228)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oxidative%20stress%20in%20systemic%20lupus%20erythematosus%20and%20rheumatoid%20arthritis%20patients%3A%20relationship%20to%20disease%20manifestations%20and%20activity&journal=Int.%20J.%20Rheum.%20Dis.&doi=10.1111%2Fj.1756-185X.2011.01630.x&volume=14&pages=325-331&publication_year=2011&author=Hassan%2CSZ) 
  1. Chadha, S. et al. Role of Nrf2 in rheumatoid arthritis. Curr. Res. Transl. Med. 68, 171–181 (2020).
[Article](https://doi.org/10.1016%2Fj.retram.2020.05.002)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32620467)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20Nrf2%20in%20rheumatoid%20arthritis&journal=Curr.%20Res.%20Transl.%20Med.&doi=10.1016%2Fj.retram.2020.05.002&volume=68&pages=171-181&publication_year=2020&author=Chadha%2CS) 
  1. Zhang, Y. et al. Nrf2-Keap1 pathway-mediated effects of resveratrol on oxidative stress and apoptosis in hydrogen peroxide-treated rheumatoid arthritis fibroblast-like synoviocytes. Ann. N. Y Acad. Sci. 1457, 166–178 (2019).
[Article](https://doi.org/10.1111%2Fnyas.14196)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31475364)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXkvVCltQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nrf2-Keap1%20pathway-mediated%20effects%20of%20resveratrol%20on%20oxidative%20stress%20and%20apoptosis%20in%20hydrogen%20peroxide-treated%20rheumatoid%20arthritis%20fibroblast-like%20synoviocytes&journal=Ann.%20N.%20Y%20Acad.%20Sci.&doi=10.1111%2Fnyas.14196&volume=1457&pages=166-178&publication_year=2019&author=Zhang%2CY) 
  1. Drijvers, J. M. et al. Pharmacologic screening identifies metabolic vulnerabilities of CD8(+) T cells. Cancer Immunol. Res. 9, 184–199 (2021).
[Article](https://doi.org/10.1158%2F2326-6066.CIR-20-0384)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33277233)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXosFymtrs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pharmacologic%20screening%20identifies%20metabolic%20vulnerabilities%20of%20CD8%28%2B%29%20T%20cells&journal=Cancer%20Immunol.%20Res.&doi=10.1158%2F2326-6066.CIR-20-0384&volume=9&pages=184-199&publication_year=2021&author=Drijvers%2CJM) 
  1. Tsaltskan, V. & Firestein, G. S. Targeting fibroblast-like synoviocytes in rheumatoid arthritis. Curr. Opin. Pharm. 67, 102304 (2022).
[Article](https://doi.org/10.1016%2Fj.coph.2022.102304)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XisFGjurnK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20fibroblast-like%20synoviocytes%20in%20rheumatoid%20arthritis&journal=Curr.%20Opin.%20Pharm.&doi=10.1016%2Fj.coph.2022.102304&volume=67&publication_year=2022&author=Tsaltskan%2CV&author=Firestein%2CGS) 
  1. Liu, Y. et al. Heterogeneous ferroptosis susceptibility of macrophages caused by focal iron overload exacerbates rheumatoid arthritis. Redox Biol. 69, 103008 (2024).
[Article](https://doi.org/10.1016%2Fj.redox.2023.103008)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38142586)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXis1ylu77M)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Heterogeneous%20ferroptosis%20susceptibility%20of%20macrophages%20caused%20by%20focal%20iron%20overload%20exacerbates%20rheumatoid%20arthritis&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2023.103008&volume=69&publication_year=2024&author=Liu%2CY) 
  1. Ba, T. et al. L-citrulline supplementation restrains ferritinophagy-mediated ferroptosis to alleviate iron overload-induced thymus oxidative damage and immune dysfunction. Nutrients 14, 4549 (2022).
  1. Ling, H. et al. Glycine increased ferroptosis via SAM-mediated GPX4 promoter methylation in rheumatoid arthritis. Rheumatology 61, 4521–4534 (2022).
[Article](https://doi.org/10.1093%2Frheumatology%2Fkeac069)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35136972)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXptlyqu70%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Glycine%20increased%20ferroptosis%20via%20SAM-mediated%20GPX4%20promoter%20methylation%20in%20rheumatoid%20arthritis&journal=Rheumatology&doi=10.1093%2Frheumatology%2Fkeac069&volume=61&pages=4521-4534&publication_year=2022&author=Ling%2CH) 
  1. Taghadosi, M. et al. The p53 status in rheumatoid arthritis with focus on fibroblast-like synoviocytes. Immunol. Res. 69, 225–238 (2021).
[Article](https://link.springer.com/doi/10.1007/s12026-021-09202-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33983569)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXht1Smt77P)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20p53%20status%20in%20rheumatoid%20arthritis%20with%20focus%20on%20fibroblast-like%20synoviocytes&journal=Immunol.%20Res.&doi=10.1007%2Fs12026-021-09202-7&volume=69&pages=225-238&publication_year=2021&author=Taghadosi%2CM) 
  1. Su, Y. et al. Ferroptosis, a novel pharmacological mechanism of anti-cancer drugs. Cancer Lett. 483, 127–136 (2020).
[Article](https://doi.org/10.1016%2Fj.canlet.2020.02.015)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32067993)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXkslagsrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%2C%20a%20novel%20pharmacological%20mechanism%20of%20anti-cancer%20drugs&journal=Cancer%20Lett.&doi=10.1016%2Fj.canlet.2020.02.015&volume=483&pages=127-136&publication_year=2020&author=Su%2CY) 
  1. Zhou, X., Mi, J. & Liu, Z. Causal association of diet-derived circulating antioxidants with the risk of rheumatoid arthritis: a Mendelian randomization study. Semin. Arthritis Rheum. 56, 152079 (2022).
[Article](https://doi.org/10.1016%2Fj.semarthrit.2022.152079)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35932494)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XisVWgsLfN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Causal%20association%20of%20diet-derived%20circulating%20antioxidants%20with%20the%20risk%20of%20rheumatoid%20arthritis%3A%20a%20Mendelian%20randomization%20study&journal=Semin.%20Arthritis%20Rheum.&doi=10.1016%2Fj.semarthrit.2022.152079&volume=56&publication_year=2022&author=Zhou%2CX&author=Mi%2CJ&author=Liu%2CZ) 
  1. Jhun, J. et al. Liposome/gold hybrid nanoparticle encoded with CoQ10 (LGNP-CoQ10) suppressed rheumatoid arthritis via STAT3/Th17 targeting. PLoS One 15, e0241080 (2020).
[Article](https://doi.org/10.1371%2Fjournal.pone.0241080)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33156836)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7647073)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitlChur%2FF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Liposome%2Fgold%20hybrid%20nanoparticle%20encoded%20with%20CoQ10%20%28LGNP-CoQ10%29%20suppressed%20rheumatoid%20arthritis%20via%20STAT3%2FTh17%20targeting&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0241080&volume=15&publication_year=2020&author=Jhun%2CJ) 
  1. Ravalli, S., Szychlinska, M. A., Leonardi, R. M. & Musumeci, G. Recently highlighted nutraceuticals for preventive management of osteoarthritis. World J. Orthop. 9, 255–261 (2018).
[Article](https://doi.org/10.5312%2Fwjo.v9.i11.255)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30479972)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6242728)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Recently%20highlighted%20nutraceuticals%20for%20preventive%20management%20of%20osteoarthritis&journal=World%20J.%20Orthop.&doi=10.5312%2Fwjo.v9.i11.255&volume=9&pages=255-261&publication_year=2018&author=Ravalli%2CS&author=Szychlinska%2CMA&author=Leonardi%2CRM&author=Musumeci%2CG) 
  1. Jean-Gilles, D. et al. Inhibitory effects of polyphenol punicalagin on type-II collagen degradation in vitro and inflammation in vivo. Chem. Biol. Interact. 205, 90–99 (2013).
[Article](https://doi.org/10.1016%2Fj.cbi.2013.06.018)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23830812)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXht1Gmur7L)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibitory%20effects%20of%20polyphenol%20punicalagin%20on%20type-II%20collagen%20degradation%20in%20vitro%20and%20inflammation%20in%20vivo&journal=Chem.%20Biol.%20Interact.&doi=10.1016%2Fj.cbi.2013.06.018&volume=205&pages=90-99&publication_year=2013&author=Jean-Gilles%2CD) 
  1. Luo, H. & Zhang, R. Icariin enhances cell survival in lipopolysaccharide-induced synoviocytes by suppressing ferroptosis via the Xc-/GPX4 axis. Exp. Ther. Med. 21, 72 (2021).
[Article](https://doi.org/10.3892%2Fetm.2020.9504)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33365072)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXis1alu77M)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Icariin%20enhances%20cell%20survival%20in%20lipopolysaccharide-induced%20synoviocytes%20by%20suppressing%20ferroptosis%20via%20the%20Xc-%2FGPX4%20axis&journal=Exp.%20Ther.%20Med.&doi=10.3892%2Fetm.2020.9504&volume=21&publication_year=2021&author=Luo%2CH&author=Zhang%2CR) 
  1. Zhou, S. et al. Emodin alleviates joint inflammation and bone erosion in rats with collagen-induced arthritis by inhibiting ferroptosis and degrading matrix metalloproteinases. Nan Fang Yi Ke Da Xue Xue Bao 43, 1776–1781 (2023).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37933654)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXmvFWrtbg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Emodin%20alleviates%20joint%20inflammation%20and%20bone%20erosion%20in%20rats%20with%20collagen-induced%20arthritis%20by%20inhibiting%20ferroptosis%20and%20degrading%20matrix%20metalloproteinases&journal=Nan%20Fang%20Yi%20Ke%20Da%20Xue%20Xue%20Bao&volume=43&pages=1776-1781&publication_year=2023&author=Zhou%2CS) 
  1. Zhou, M. J. et al. Total triterpenes of Euphorbium alleviates rheumatoid arthritis via Nrf2/HO-1/GPX4 pathway. Zhongguo Zhong Yao Za Zhi 48, 4834–4842 (2023).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37802825)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Total%20triterpenes%20of%20Euphorbium%20alleviates%20rheumatoid%20arthritis%20via%20Nrf2%2FHO-1%2FGPX4%20pathway&journal=Zhongguo%20Zhong%20Yao%20Za%20Zhi&volume=48&pages=4834-4842&publication_year=2023&author=Zhou%2CMJ) 
  1. Demirtzoglou, G. et al. Haloperidol’s cytogenetic effect on T lymphocytes of systemic lupus erythematosus and rheumatoid arthritis patients: an in vitro study. Cureus 15, e42283 (2023).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37609095)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10440589)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Haloperidol%E2%80%99s%20cytogenetic%20effect%20on%20T%20lymphocytes%20of%20systemic%20lupus%20erythematosus%20and%20rheumatoid%20arthritis%20patients%3A%20an%20in%20vitro%20study&journal=Cureus&volume=15&publication_year=2023&author=Demirtzoglou%2CG) 
  1. Peng, C. Y. et al. Effects of moxibustion on p53, SLC7A11, and GPX4 expression in synovial tissues of rats with adjuvant arthritis]. Zhen Ci Yan Jiu 47, 21–26 (2022).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35128866)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effects%20of%20moxibustion%20on%20p53%2C%20SLC7A11%2C%20and%20GPX4%20expression%20in%20synovial%20tissues%20of%20rats%20with%20adjuvant%20arthritis%5D&journal=Zhen%20Ci%20Yan%20Jiu&volume=47&pages=21-26&publication_year=2022&author=Peng%2CCY) 
  1. Garcia-Romo, G. S. et al. Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci. Transl. Med. 3, 73ra20 (2011).
[Article](https://doi.org/10.1126%2Fscitranslmed.3001201)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21389264)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143837)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Netting%20neutrophils%20are%20major%20inducers%20of%20type%20I%20IFN%20production%20in%20pediatric%20systemic%20lupus%20erythematosus&journal=Sci.%20Transl.%20Med.&doi=10.1126%2Fscitranslmed.3001201&volume=3&publication_year=2011&author=Garcia-Romo%2CGS) 
  1. Li, P. et al. Glutathione peroxidase 4-regulated neutrophil ferroptosis induces systemic autoimmunity. Nat. Immunol. 22, 1107–1117 (2021).
[Article](https://doi.org/10.1038%2Fs41590-021-00993-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34385713)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8609402)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhslOit7jP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Glutathione%20peroxidase%204-regulated%20neutrophil%20ferroptosis%20induces%20systemic%20autoimmunity&journal=Nat.%20Immunol.&doi=10.1038%2Fs41590-021-00993-3&volume=22&pages=1107-1117&publication_year=2021&author=Li%2CP) 
  1. Ohl, K., Rauen, T. & Tenbrock, K. Dysregulated neutrophilic cell death in SLE: a spotlight on ferroptosis. Signal Transduct. Target Ther. 6, 392 (2021).
[Article](https://doi.org/10.1038%2Fs41392-021-00804-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34764247)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8586233)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dysregulated%20neutrophilic%20cell%20death%20in%20SLE%3A%20a%20spotlight%20on%20ferroptosis&journal=Signal%20Transduct.%20Target%20Ther.&doi=10.1038%2Fs41392-021-00804-z&volume=6&publication_year=2021&author=Ohl%2CK&author=Rauen%2CT&author=Tenbrock%2CK) 
  1. Yang, B. et al. Ferroptosis inhibitor regulates the disease progression of systematic lupus erythematosus mice model through Th1/Th2 ratio. Curr. Mol. Med. 23, 799–807 (2023).
[Article](https://doi.org/10.2174%2F1566524022666220525144630)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35619279)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFyqsLzP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20inhibitor%20regulates%20the%20disease%20progression%20of%20systematic%20lupus%20erythematosus%20mice%20model%20through%20Th1%2FTh2%20ratio&journal=Curr.%20Mol.%20Med.&doi=10.2174%2F1566524022666220525144630&volume=23&pages=799-807&publication_year=2023&author=Yang%2CB) 
  1. Tao, K. et al. Ferroptosis in peripheral blood mononuclear cells of systemic lupus erythematosus. Clin. Exp. Rheumatol. 42, 651–657 (2024).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38294021)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20in%20peripheral%20blood%20mononuclear%20cells%20of%20systemic%20lupus%20erythematosus&journal=Clin.%20Exp.%20Rheumatol.&volume=42&pages=651-657&publication_year=2024&author=Tao%2CK) 
  1. Chang, Y. et al. Erucic acid improves the progress of pregnancy complicated with systemic lupus erythematosus by inhibiting the effector function of CD8(+) T cells. MedComm (2020) 4, e382 (2023).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37771913)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitVels7rE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Erucic%20acid%20improves%20the%20progress%20of%20pregnancy%20complicated%20with%20systemic%20lupus%20erythematosus%20by%20inhibiting%20the%20effector%20function%20of%20CD8%28%2B%29%20T%20cells&journal=MedComm%20%282020%29&volume=4&publication_year=2023&author=Chang%2CY) 
  1. Payet, C. A. et al. Myasthenia gravis: an acquired interferonopathy? Cells 11, 1218 (2022).
  1. Huang, J., Yan, Z., Song, Y. & Chen, T. Nanodrug delivery systems for myasthenia gravis: advances and perspectives. Pharmaceutics 16, 651 (2024).
  1. Huang, Y. et al. Ferroptosis in a sarcopenia model of senescence accelerated mouse prone 8 (SAMP8). Int. J. Biol. Sci. 17, 151–162 (2021).
[Article](https://doi.org/10.7150%2Fijbs.53126)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33390840)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7757032)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXisFWjs7zP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20in%20a%20sarcopenia%20model%20of%20senescence%20accelerated%20mouse%20prone%208%20%28SAMP8%29&journal=Int.%20J.%20Biol.%20Sci.&doi=10.7150%2Fijbs.53126&volume=17&pages=151-162&publication_year=2021&author=Huang%2CY) 
  1. Li, K. et al. Iron metabolism in non-anemic myasthenia gravis patients: a cohort study. J. Neuroimmunol. 375, 578015 (2023).
[Article](https://doi.org/10.1016%2Fj.jneuroim.2023.578015)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36682196)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsFSrur0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20metabolism%20in%20non-anemic%20myasthenia%20gravis%20patients%3A%20a%20cohort%20study&journal=J.%20Neuroimmunol.&doi=10.1016%2Fj.jneuroim.2023.578015&volume=375&publication_year=2023&author=Li%2CK) 
  1. Huang, P. The relationship between serum iron levels and AChR-Ab and IL-6 in patients with myasthenia gravis. Eur. Rev. Med. Pharm. Sci. 27, 98–102 (2023).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BB28npslaktg%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20relationship%20between%20serum%20iron%20levels%20and%20AChR-Ab%20and%20IL-6%20in%20patients%20with%20myasthenia%20gravis&journal=Eur.%20Rev.%20Med.%20Pharm.%20Sci.&volume=27&pages=98-102&publication_year=2023&author=Huang%2CP) 
  1. Sung, H. K., Murugathasan, M., Abdul-Sater, A. A. & Sweeney, G. Autophagy deficiency exacerbates iron overload induced reactive oxygen species production and apoptotic cell death in skeletal muscle cells. Cell Death Dis. 14, 252 (2023).
[Article](https://doi.org/10.1038%2Fs41419-022-05484-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37029101)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10081999)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXns1Sgu7w%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Autophagy%20deficiency%20exacerbates%20iron%20overload%20induced%20reactive%20oxygen%20species%20production%20and%20apoptotic%20cell%20death%20in%20skeletal%20muscle%20cells&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-022-05484-3&volume=14&publication_year=2023&author=Sung%2CHK&author=Murugathasan%2CM&author=Abdul-Sater%2CAA&author=Sweeney%2CG) 
  1. Ding, H. et al. Transferrin receptor 1 ablation in satellite cells impedes skeletal muscle regeneration through activation of ferroptosis. J. Cachexia Sarcopenia Muscle 12, 746–768 (2021).
[Article](https://doi.org/10.1002%2Fjcsm.12700)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33955709)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8200440)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Transferrin%20receptor%201%20ablation%20in%20satellite%20cells%20impedes%20skeletal%20muscle%20regeneration%20through%20activation%20of%20ferroptosis&journal=J.%20Cachexia%20Sarcopenia%20Muscle&doi=10.1002%2Fjcsm.12700&volume=12&pages=746-768&publication_year=2021&author=Ding%2CH) 
  1. Krishnan, K., Trobe, J. D. & Adams, P. T. Myasthenia gravis following iron chelation therapy with intravenous desferrioxamine. Eur. J. Haematol. 55, 138–139 (1995).
[Article](https://doi.org/10.1111%2Fj.1600-0609.1995.tb01826.x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7628591)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK2MzlsVyiuw%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Myasthenia%20gravis%20following%20iron%20chelation%20therapy%20with%20intravenous%20desferrioxamine&journal=Eur.%20J.%20Haematol.&doi=10.1111%2Fj.1600-0609.1995.tb01826.x&volume=55&pages=138-139&publication_year=1995&author=Krishnan%2CK&author=Trobe%2CJD&author=Adams%2CPT) 
  1. Duan, G. et al. Mitochondrial iron metabolism: the crucial actors in diseases. Molecules 28, 29 (2022).
  1. Rouault, T. A. Mitochondrial iron overload: causes and consequences. Curr. Opin. Genet Dev. 38, 31–37 (2016).
[Article](https://doi.org/10.1016%2Fj.gde.2016.02.004)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27026139)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035716)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XksVWhsr0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20iron%20overload%3A%20causes%20and%20consequences&journal=Curr.%20Opin.%20Genet%20Dev.&doi=10.1016%2Fj.gde.2016.02.004&volume=38&pages=31-37&publication_year=2016&author=Rouault%2CTA) 
  1. Bellanti, F., Lo Buglio, A. & Vendemiale, G. Muscle delivery of mitochondria-targeted drugs for the treatment of sarcopenia: rationale and perspectives. Pharmaceutics 14, 2588 (2022).
  1. Liu, Y. et al. Potential mechanisms of uremic muscle wasting and the protective role of the mitochondria-targeted antioxidant Mito-TEMPO. Int. Urol. Nephrol. 52, 1551–1561 (2020).
[Article](https://link.springer.com/doi/10.1007/s11255-020-02508-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32488756)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtVOjt7bL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Potential%20mechanisms%20of%20uremic%20muscle%20wasting%20and%20the%20protective%20role%20of%20the%20mitochondria-targeted%20antioxidant%20Mito-TEMPO&journal=Int.%20Urol.%20Nephrol.&doi=10.1007%2Fs11255-020-02508-9&volume=52&pages=1551-1561&publication_year=2020&author=Liu%2CY) 
  1. van de Weijer, T. et al. Evidence for a direct effect of the NAD+ precursor acipimox on muscle mitochondrial function in humans. Diabetes 64, 1193–1201 (2015).
[Article](https://doi.org/10.2337%2Fdb14-0667)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25352640)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Evidence%20for%20a%20direct%20effect%20of%20the%20NAD%2B%20precursor%20acipimox%20on%20muscle%20mitochondrial%20function%20in%20humans&journal=Diabetes&doi=10.2337%2Fdb14-0667&volume=64&pages=1193-1201&publication_year=2015&author=Weijer%2CT) 
  1. Zhou, Y. et al. Extracellular vesicles encapsulated with caspase-1 inhibitor ameliorate experimental autoimmune myasthenia gravis through targeting macrophages. J. Control Release 364, 458–472 (2023).
[Article](https://doi.org/10.1016%2Fj.jconrel.2023.11.006)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37935259)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitlejtLvE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Extracellular%20vesicles%20encapsulated%20with%20caspase-1%20inhibitor%20ameliorate%20experimental%20autoimmune%20myasthenia%20gravis%20through%20targeting%20macrophages&journal=J.%20Control%20Release&doi=10.1016%2Fj.jconrel.2023.11.006&volume=364&pages=458-472&publication_year=2023&author=Zhou%2CY) 
  1. Raimondo, T. M. & Mooney, D. J. Anti-inflammatory nanoparticles significantly improve muscle function in a murine model of advanced muscular dystrophy. Sci. Adv. 7, eabh3693 (2021).
  1. Turjeman, K. et al. Liposomal steroid nano-drug is superior to steroids as-is in mdx mouse model of Duchenne muscular dystrophy. Nanomedicine 16, 34–44 (2019).
[Article](https://doi.org/10.1016%2Fj.nano.2018.11.012)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30529791)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXisF2htb3P)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Liposomal%20steroid%20nano-drug%20is%20superior%20to%20steroids%20as-is%20in%20mdx%20mouse%20model%20of%20Duchenne%20muscular%20dystrophy&journal=Nanomedicine&doi=10.1016%2Fj.nano.2018.11.012&volume=16&pages=34-44&publication_year=2019&author=Turjeman%2CK) 
  1. Raimondo, T. M. & Mooney, D. J. Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice. Proc. Natl. Acad. Sci. USA 115, 10648–10653 (2018).
[Article](https://doi.org/10.1073%2Fpnas.1806908115)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30275293)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6196479)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXhvFyntr3J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Functional%20muscle%20recovery%20with%20nanoparticle-directed%20M2%20macrophage%20polarization%20in%20mice&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1806908115&volume=115&pages=10648-10653&publication_year=2018&author=Raimondo%2CTM&author=Mooney%2CDJ) 
  1. Adams, P. C., Jeffrey, G. & Ryan, J. Haemochromatosis. Lancet 401, 1811–1821 (2023).
[Article](https://doi.org/10.1016%2FS0140-6736%2823%2900287-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37121243)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXovVOns7Y%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Haemochromatosis&journal=Lancet&doi=10.1016%2FS0140-6736%2823%2900287-8&volume=401&pages=1811-1821&publication_year=2023&author=Adams%2CPC&author=Jeffrey%2CG&author=Ryan%2CJ) 
  1. Girelli, D. et al. Hemochromatosis classification: update and recommendations by the BIOIRON Society. Blood 139, 3018–3029 (2022).
[Article](https://doi.org/10.1182%2Fblood.2021011338)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34601591)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhtlOhsb%2FE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hemochromatosis%20classification%3A%20update%20and%20recommendations%20by%20the%20BIOIRON%20Society&journal=Blood&doi=10.1182%2Fblood.2021011338&volume=139&pages=3018-3029&publication_year=2022&author=Girelli%2CD) 
  1. Brissot, P. et al. Haemochromatosis. Nat. Rev. Dis. Prim. 4, 18016 (2018).
[Article](https://doi.org/10.1038%2Fnrdp.2018.16)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29620054)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Haemochromatosis&journal=Nat.%20Rev.%20Dis.%20Prim.&doi=10.1038%2Fnrdp.2018.16&volume=4&publication_year=2018&author=Brissot%2CP) 
  1. Huang, F. W. et al. A mouse model of juvenile hemochromatosis. J. Clin. Investig. 115, 2187–2191 (2005).
[Article](https://doi.org/10.1172%2FJCI25049)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16075059)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1180543)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXntFCmtb0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20mouse%20model%20of%20juvenile%20hemochromatosis&journal=J.%20Clin.%20Investig.&doi=10.1172%2FJCI25049&volume=115&pages=2187-2191&publication_year=2005&author=Huang%2CFW) 
  1. Wang, H. et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66, 449–465 (2017).
[Article](https://doi.org/10.1002%2Fhep.29117)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28195347)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtF2qs7nF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Characterization%20of%20ferroptosis%20in%20murine%20models%20of%20hemochromatosis&journal=Hepatology&doi=10.1002%2Fhep.29117&volume=66&pages=449-465&publication_year=2017&author=Wang%2CH) 
  1. Brissot, P., Bardou-Jacquet, E., Jouanolle, A. M. & Loreal, O. Iron disorders of genetic origin: a changing world. Trends Mol. Med. 17, 707–713 (2011).
[Article](https://doi.org/10.1016%2Fj.molmed.2011.07.004)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21862411)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhsFGjtrjM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20disorders%20of%20genetic%20origin%3A%20a%20changing%20world&journal=Trends%20Mol.%20Med.&doi=10.1016%2Fj.molmed.2011.07.004&volume=17&pages=707-713&publication_year=2011&author=Brissot%2CP&author=Bardou-Jacquet%2CE&author=Jouanolle%2CAM&author=Loreal%2CO) 
  1. Musallam, K. M., Cappellini, M. D., Wood, J. C. & Taher, A. T. Iron overload in non-transfusion-dependent thalassemia: a clinical perspective. Blood Rev. 26, S16–S19 (2012).
[Article](https://doi.org/10.1016%2FS0268-960X%2812%2970006-1)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22631036)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xhs1OksrrN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20overload%20in%20non-transfusion-dependent%20thalassemia%3A%20a%20clinical%20perspective&journal=Blood%20Rev.&doi=10.1016%2FS0268-960X%2812%2970006-1&volume=26&pages=S16-S19&publication_year=2012&author=Musallam%2CKM&author=Cappellini%2CMD&author=Wood%2CJC&author=Taher%2CAT) 
  1. Ramos, E. et al. Minihepcidins prevent iron overload in a hepcidin-deficient mouse model of severe hemochromatosis. Blood 120, 3829–3836 (2012).
[Article](https://doi.org/10.1182%2Fblood-2012-07-440743)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22990014)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488893)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xhs12gsrrP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Minihepcidins%20prevent%20iron%20overload%20in%20a%20hepcidin-deficient%20mouse%20model%20of%20severe%20hemochromatosis&journal=Blood&doi=10.1182%2Fblood-2012-07-440743&volume=120&pages=3829-3836&publication_year=2012&author=Ramos%2CE) 
  1. Preza, G. C. et al. Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. J. Clin. Investig. 121, 4880–4888 (2011).
[Article](https://doi.org/10.1172%2FJCI57693)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22045566)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3225996)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhs1ShsLnM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Minihepcidins%20are%20rationally%20designed%20small%20peptides%20that%20mimic%20hepcidin%20activity%20in%20mice%20and%20may%20be%20useful%20for%20the%20treatment%20of%20iron%20overload&journal=J.%20Clin.%20Investig.&doi=10.1172%2FJCI57693&volume=121&pages=4880-4888&publication_year=2011&author=Preza%2CGC) 
  1. Park, T. J. et al. Cloning and characterization of TMPRSS6, a novel type 2 transmembrane serine protease. Mol. Cells 19, 223–227 (2005).
[Article](https://doi.org/10.1016%2FS1016-8478%2823%2913160-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15879706)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXksFalsrY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cloning%20and%20characterization%20of%20TMPRSS6%2C%20a%20novel%20type%202%20transmembrane%20serine%20protease&journal=Mol.%20Cells&doi=10.1016%2FS1016-8478%2823%2913160-8&volume=19&pages=223-227&publication_year=2005&author=Park%2CTJ) 
  1. Taher, A. T., Weatherall, D. J. & Cappellini, M. D. Thalassaemia. Lancet 391, 155–167 (2018).
[Article](https://doi.org/10.1016%2FS0140-6736%2817%2931822-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28774421)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Thalassaemia&journal=Lancet&doi=10.1016%2FS0140-6736%2817%2931822-6&volume=391&pages=155-167&publication_year=2018&author=Taher%2CAT&author=Weatherall%2CDJ&author=Cappellini%2CMD) 
  1. Merkeley, H. & Bolster, L. Thalassemia. CMAJ 192, E1210 (2020).
[Article](https://doi.org/10.1503%2Fcmaj.191613)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33051316)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7588257)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Thalassemia&journal=CMAJ&doi=10.1503%2Fcmaj.191613&volume=192&publication_year=2020&author=Merkeley%2CH&author=Bolster%2CL) 
  1. Hokland, P. et al. Thalassaemia-A global view. Br. J. Haematol. 201, 199–214 (2023).
[Article](https://doi.org/10.1111%2Fbjh.18671)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36799486)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Thalassaemia-A%20global%20view&journal=Br.%20J.%20Haematol.&doi=10.1111%2Fbjh.18671&volume=201&pages=199-214&publication_year=2023&author=Hokland%2CP) 
  1. Motta, I., Bou-Fakhredin, R., Taher, A. T. & Cappellini, M. D. Beta thalassemia: new therapeutic options beyond transfusion and iron chelation. Drugs 80, 1053–1063 (2020).
[Article](https://link.springer.com/doi/10.1007/s40265-020-01341-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32557398)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7299245)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXht1CqsL%2FP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Beta%20thalassemia%3A%20new%20therapeutic%20options%20beyond%20transfusion%20and%20iron%20chelation&journal=Drugs&doi=10.1007%2Fs40265-020-01341-9&volume=80&pages=1053-1063&publication_year=2020&author=Motta%2CI&author=Bou-Fakhredin%2CR&author=Taher%2CAT&author=Cappellini%2CMD) 
  1. Saliba, A. N., Musallam, K. M. & Taher, A. T. How I treat non-transfusion-dependent beta-thalassemia. Blood 142, 949–960 (2023).
[Article](https://doi.org/10.1182%2Fblood.2023020683)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37478396)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10644094)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFegsb7J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=How%20I%20treat%20non-transfusion-dependent%20beta-thalassemia&journal=Blood&doi=10.1182%2Fblood.2023020683&volume=142&pages=949-960&publication_year=2023&author=Saliba%2CAN&author=Musallam%2CKM&author=Taher%2CAT) 
  1. Taher, A. T. & Saliba, A. N. Iron overload in thalassemia: different organs at different rates. Hematol. Am. Soc. Hematol. Educ. Program 2017, 265–271 (2017).
[Article](https://doi.org/10.1182%2Fasheducation-2017.1.265)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20overload%20in%20thalassemia%3A%20different%20organs%20at%20different%20rates&journal=Hematol.%20Am.%20Soc.%20Hematol.%20Educ.%20Program&doi=10.1182%2Fasheducation-2017.1.265&volume=2017&pages=265-271&publication_year=2017&author=Taher%2CAT&author=Saliba%2CAN) 
  1. Moukhadder, H. M., Halawi, R., Cappellini, M. D. & Taher, A. T. Hepatocellular carcinoma as an emerging morbidity in the thalassemia syndromes: a comprehensive review. Cancer 123, 751–758 (2017).
[Article](https://doi.org/10.1002%2Fcncr.30462)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27911488)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepatocellular%20carcinoma%20as%20an%20emerging%20morbidity%20in%20the%20thalassemia%20syndromes%3A%20a%20comprehensive%20review&journal=Cancer&doi=10.1002%2Fcncr.30462&volume=123&pages=751-758&publication_year=2017&author=Moukhadder%2CHM&author=Halawi%2CR&author=Cappellini%2CMD&author=Taher%2CAT) 
  1. Kurtoglu, A. U., Kurtoglu, E. & Temizkan, A. K. Effect of iron overload on endocrinopathies in patients with beta-thalassaemia major and intermedia. Endokrynol. Pol. 63, 260–263 (2012).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22933160)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtFaqu7vM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effect%20of%20iron%20overload%20on%20endocrinopathies%20in%20patients%20with%20beta-thalassaemia%20major%20and%20intermedia&journal=Endokrynol.%20Pol.&volume=63&pages=260-263&publication_year=2012&author=Kurtoglu%2CAU&author=Kurtoglu%2CE&author=Temizkan%2CAK) 
  1. Quinn, C. T. et al. Renal dysfunction in patients with thalassaemia. Br. J. Haematol. 153, 111–117 (2011).
[Article](https://doi.org/10.1111%2Fj.1365-2141.2010.08477.x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21332704)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4250090)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXlt1Wisb0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Renal%20dysfunction%20in%20patients%20with%20thalassaemia&journal=Br.%20J.%20Haematol.&doi=10.1111%2Fj.1365-2141.2010.08477.x&volume=153&pages=111-117&publication_year=2011&author=Quinn%2CCT) 
  1. Somparn, N. et al. Cellular adaptation mediated through Nrf2-induced glutamate cysteine ligase up-regulation against oxidative stress caused by iron overload in beta-thalassemia/HbE patients. Free Radic. Res. 53, 791–799 (2019).
[Article](https://doi.org/10.1080%2F10715762.2019.1632444)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31198069)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhtlWitL3O)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cellular%20adaptation%20mediated%20through%20Nrf2-induced%20glutamate%20cysteine%20ligase%20up-regulation%20against%20oxidative%20stress%20caused%20by%20iron%20overload%20in%20beta-thalassemia%2FHbE%20patients&journal=Free%20Radic.%20Res.&doi=10.1080%2F10715762.2019.1632444&volume=53&pages=791-799&publication_year=2019&author=Somparn%2CN) 
  1. Gardenghi, S. et al. Hepcidin as a therapeutic tool to limit iron overload and improve anemia in beta-thalassemic mice. J. Clin. Investig. 120, 4466–4477 (2010).
[Article](https://doi.org/10.1172%2FJCI41717)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21099112)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993583)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXhsFCntLjP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepcidin%20as%20a%20therapeutic%20tool%20to%20limit%20iron%20overload%20and%20improve%20anemia%20in%20beta-thalassemic%20mice&journal=J.%20Clin.%20Investig.&doi=10.1172%2FJCI41717&volume=120&pages=4466-4477&publication_year=2010&author=Gardenghi%2CS) 
  1. Casu, C. et al. Minihepcidins improve ineffective erythropoiesis and splenomegaly in a new mouse model of adult beta-thalassemia major. Haematologica 105, 1835–1844 (2020).
[Article](https://doi.org/10.3324%2Fhaematol.2018.212589)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31582543)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7327634)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitVWgsbfF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Minihepcidins%20improve%20ineffective%20erythropoiesis%20and%20splenomegaly%20in%20a%20new%20mouse%20model%20of%20adult%20beta-thalassemia%20major&journal=Haematologica&doi=10.3324%2Fhaematol.2018.212589&volume=105&pages=1835-1844&publication_year=2020&author=Casu%2CC) 
  1. Casu, C. et al. Minihepcidin peptides as disease modifiers in mice affected by beta-thalassemia and polycythemia vera. Blood 128, 265–276 (2016).
[Article](https://doi.org/10.1182%2Fblood-2015-10-676742)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27154187)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4946204)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhvVymu7jM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Minihepcidin%20peptides%20as%20disease%20modifiers%20in%20mice%20affected%20by%20beta-thalassemia%20and%20polycythemia%20vera&journal=Blood&doi=10.1182%2Fblood-2015-10-676742&volume=128&pages=265-276&publication_year=2016&author=Casu%2CC) 
  1. Manolova, V. et al. Oral ferroportin inhibitor ameliorates ineffective erythropoiesis in a model of beta-thalassemia. J. Clin. Investig. 130, 491–506 (2019).
[Article](https://doi.org/10.1172%2FJCI129382)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31638596)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6934209)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oral%20ferroportin%20inhibitor%20ameliorates%20ineffective%20erythropoiesis%20in%20a%20model%20of%20beta-thalassemia&journal=J.%20Clin.%20Investig.&doi=10.1172%2FJCI129382&volume=130&pages=491-506&publication_year=2019&author=Manolova%2CV) 
  1. Delatycki, M. B. & Bidichandani, S. I. Friedreich ataxia- pathogenesis and implications for therapies. Neurobiol. Dis. 132, 104606 (2019).
[Article](https://doi.org/10.1016%2Fj.nbd.2019.104606)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31494282)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhvFKhurfJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Friedreich%20ataxia-%20pathogenesis%20and%20implications%20for%20therapies&journal=Neurobiol.%20Dis.&doi=10.1016%2Fj.nbd.2019.104606&volume=132&publication_year=2019&author=Delatycki%2CMB&author=Bidichandani%2CSI) 
  1. Cook, A. & Giunti, P. Friedreich’s ataxia: clinical features, pathogenesis and management. Br. Med. Bull. 124, 19–30 (2017).
[Article](https://doi.org/10.1093%2Fbmb%2Fldx034)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29053830)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5862303)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXkvVKltL0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Friedreich%E2%80%99s%20ataxia%3A%20clinical%20features%2C%20pathogenesis%20and%20management&journal=Br.%20Med.%20Bull.&doi=10.1093%2Fbmb%2Fldx034&volume=124&pages=19-30&publication_year=2017&author=Cook%2CA&author=Giunti%2CP) 
  1. La Rosa, P. et al. Ferroptosis in friedreich’s ataxia: a metal-induced neurodegenerative disease. Biomolecules 10, 1551 (2020).
  1. Lees, J. G. et al. Cellular pathophysiology of Friedreich’s ataxia cardiomyopathy. Int. J. Cardiol. 346, 71–78 (2022).
[Article](https://doi.org/10.1016%2Fj.ijcard.2021.11.033)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34798207)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cellular%20pathophysiology%20of%20Friedreich%E2%80%99s%20ataxia%20cardiomyopathy&journal=Int.%20J.%20Cardiol.&doi=10.1016%2Fj.ijcard.2021.11.033&volume=346&pages=71-78&publication_year=2022&author=Lees%2CJG) 
  1. Koeppen, A. H. et al. The pathogenesis of cardiomyopathy in Friedreich ataxia. PLoS One 10, e0116396 (2015).
[Article](https://doi.org/10.1371%2Fjournal.pone.0116396)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25738292)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4349588)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20pathogenesis%20of%20cardiomyopathy%20in%20Friedreich%20ataxia&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0116396&volume=10&publication_year=2015&author=Koeppen%2CAH) 
  1. Abeti, R. et al. Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich’s ataxia. Cell Death Dis. 7, e2237 (2016).
[Article](https://doi.org/10.1038%2Fcddis.2016.111)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27228352)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917650)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XovVyqsrk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20energy%20imbalance%20and%20lipid%20peroxidation%20cause%20cell%20death%20in%20Friedreich%E2%80%99s%20ataxia&journal=Cell%20Death%20Dis.&doi=10.1038%2Fcddis.2016.111&volume=7&publication_year=2016&author=Abeti%2CR) 
  1. Abeti, R. et al. Targeting lipid peroxidation and mitochondrial imbalance in Friedreich’s ataxia. Pharm. Res. 99, 344–350 (2015).
[Article](https://doi.org/10.1016%2Fj.phrs.2015.05.015)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFemsLrF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20lipid%20peroxidation%20and%20mitochondrial%20imbalance%20in%20Friedreich%E2%80%99s%20ataxia&journal=Pharm.%20Res.&doi=10.1016%2Fj.phrs.2015.05.015&volume=99&pages=344-350&publication_year=2015&author=Abeti%2CR) 
  1. Lupoli, F. et al. The role of oxidative stress in Friedreich’s ataxia. FEBS Lett. 592, 718–727 (2018).
[Article](https://doi.org/10.1002%2F1873-3468.12928)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29197070)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXitVSmtrfP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20oxidative%20stress%20in%20Friedreich%E2%80%99s%20ataxia&journal=FEBS%20Lett.&doi=10.1002%2F1873-3468.12928&volume=592&pages=718-727&publication_year=2018&author=Lupoli%2CF) 
  1. Turchi, R., Faraonio, R., Lettieri-Barbato, D. & Aquilano, K. An overview of the ferroptosis hallmarks in Friedreich’s ataxia. Biomolecules 10, 1489(2020).
  1. Wilson, R. B. et al. Increased serum transferrin receptor concentrations in Friedreich ataxia. Ann. Neurol. 47, 659–661 (2000).
[Article](https://doi.org/10.1002%2F1531-8249%28200005%2947%3A5%3C659%3A%3AAID-ANA17%3E3.0.CO%3B2-T)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10805340)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXjsFCnt78%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Increased%20serum%20transferrin%20receptor%20concentrations%20in%20Friedreich%20ataxia&journal=Ann.%20Neurol.&doi=10.1002%2F1531-8249%28200005%2947%3A5%3C659%3A%3AAID-ANA17%3E3.0.CO%3B2-T&volume=47&pages=659-661&publication_year=2000&author=Wilson%2CRB) 
  1. Scarano, V. et al. Serum transferrin receptor levels in Friedreich’s and other degenerative ataxias. Neurology 57, 159–160 (2001).
[Article](https://doi.org/10.1212%2FWNL.57.1.159)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11445653)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD3MzptFeiug%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Serum%20transferrin%20receptor%20levels%20in%20Friedreich%E2%80%99s%20and%20other%20degenerative%20ataxias&journal=Neurology&doi=10.1212%2FWNL.57.1.159&volume=57&pages=159-160&publication_year=2001&author=Scarano%2CV) 
  1. Huang, M. L. et al. Elucidation of the mechanism of mitochondrial iron loading in Friedreich’s ataxia by analysis of a mouse mutant. Proc. Natl. Acad. Sci. USA 106, 16381–16386 (2009).
[Article](https://doi.org/10.1073%2Fpnas.0906784106)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19805308)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752539)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Elucidation%20of%20the%20mechanism%20of%20mitochondrial%20iron%20loading%20in%20Friedreich%E2%80%99s%20ataxia%20by%20analysis%20of%20a%20mouse%20mutant&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.0906784106&volume=106&pages=16381-16386&publication_year=2009&author=Huang%2CML) 
  1. Wang, P. et al. Mitochondrial ferritin attenuates cerebral ischaemia/reperfusion injury by inhibiting ferroptosis. Cell Death Dis. 12, 447 (2021).
[Article](https://doi.org/10.1038%2Fs41419-021-03725-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33953171)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8099895)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXht1Cjt7rL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20ferritin%20attenuates%20cerebral%20ischaemia%2Freperfusion%20injury%20by%20inhibiting%20ferroptosis&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-021-03725-5&volume=12&publication_year=2021&author=Wang%2CP) 
  1. Campanella, A. et al. The expression of human mitochondrial ferritin rescues respiratory function in frataxin-deficient yeast. Hum. Mol. Genet. 13, 2279–2288 (2004).
[Article](https://doi.org/10.1093%2Fhmg%2Fddh232)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15282205)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXns1OnurY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20expression%20of%20human%20mitochondrial%20ferritin%20rescues%20respiratory%20function%20in%20frataxin-deficient%20yeast&journal=Hum.%20Mol.%20Genet.&doi=10.1093%2Fhmg%2Fddh232&volume=13&pages=2279-2288&publication_year=2004&author=Campanella%2CA) 
  1. Desmyter, L. et al. Expression of the human ferritin light chain in a frataxin mutant yeast affects ageing and cell death. Exp. Gerontol. 39, 707–715 (2004).
[Article](https://doi.org/10.1016%2Fj.exger.2004.01.008)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15130665)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXjvVahtbY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Expression%20of%20the%20human%20ferritin%20light%20chain%20in%20a%20frataxin%20mutant%20yeast%20affects%20ageing%20and%20cell%20death&journal=Exp.%20Gerontol.&doi=10.1016%2Fj.exger.2004.01.008&volume=39&pages=707-715&publication_year=2004&author=Desmyter%2CL) 
  1. Tozzi, G. et al. Antioxidant enzymes in blood of patients with Friedreich’s ataxia. Arch. Dis. Child 86, 376–379 (2002).
[Article](https://doi.org/10.1136%2Fadc.86.5.376)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11970939)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1751091)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD383jtFKhtA%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Antioxidant%20enzymes%20in%20blood%20of%20patients%20with%20Friedreich%E2%80%99s%20ataxia&journal=Arch.%20Dis.%20Child&doi=10.1136%2Fadc.86.5.376&volume=86&pages=376-379&publication_year=2002&author=Tozzi%2CG) 
  1. Cotticelli, M. G. et al. Ferroptosis as a novel therapeutic target for Friedreich’s ataxia. J. Pharm. Exp. Ther. 369, 47–54 (2019).
[Article](https://doi.org/10.1124%2Fjpet.118.252759)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXpt1enu7k%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20as%20a%20novel%20therapeutic%20target%20for%20Friedreich%E2%80%99s%20ataxia&journal=J.%20Pharm.%20Exp.%20Ther.&doi=10.1124%2Fjpet.118.252759&volume=369&pages=47-54&publication_year=2019&author=Cotticelli%2CMG) 
  1. Auchere, F. et al. Glutathione-dependent redox status of frataxin-deficient cells in a yeast model of Friedreich’s ataxia. Hum. Mol. Genet. 17, 2790–2802 (2008).
[Article](https://doi.org/10.1093%2Fhmg%2Fddn178)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18562474)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXhtVGgt7bK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Glutathione-dependent%20redox%20status%20of%20frataxin-deficient%20cells%20in%20a%20yeast%20model%20of%20Friedreich%E2%80%99s%20ataxia&journal=Hum.%20Mol.%20Genet.&doi=10.1093%2Fhmg%2Fddn178&volume=17&pages=2790-2802&publication_year=2008&author=Auchere%2CF) 
  1. Turchi, R. et al. Frataxin deficiency induces lipid accumulation and affects thermogenesis in brown adipose tissue. Cell Death Dis. 11, 51 (2020).
[Article](https://doi.org/10.1038%2Fs41419-020-2253-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31974344)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6978516)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXktFWiur8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Frataxin%20deficiency%20induces%20lipid%20accumulation%20and%20affects%20thermogenesis%20in%20brown%20adipose%20tissue&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-020-2253-2&volume=11&publication_year=2020&author=Turchi%2CR) 
  1. Jauslin, M. L., Wirth, T., Meier, T. & Schoumacher, F. A cellular model for Friedreich ataxia reveals small-molecule glutathione peroxidase mimetics as novel treatment strategy. Hum. Mol. Genet. 11, 3055–3063 (2002).
[Article](https://doi.org/10.1093%2Fhmg%2F11.24.3055)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12417527)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD38XosFOgsL8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20cellular%20model%20for%20Friedreich%20ataxia%20reveals%20small-molecule%20glutathione%20peroxidase%20mimetics%20as%20novel%20treatment%20strategy&journal=Hum.%20Mol.%20Genet.&doi=10.1093%2Fhmg%2F11.24.3055&volume=11&pages=3055-3063&publication_year=2002&author=Jauslin%2CML&author=Wirth%2CT&author=Meier%2CT&author=Schoumacher%2CF) 
  1. La Rosa, P. et al. The Nrf2 induction prevents ferroptosis in Friedreich’s ataxia. Redox Biol. 38, 101791 (2021).
[Article](https://doi.org/10.1016%2Fj.redox.2020.101791)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33197769)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20Nrf2%20induction%20prevents%20ferroptosis%20in%20Friedreich%E2%80%99s%20ataxia&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2020.101791&volume=38&publication_year=2021&author=Rosa%2CP) 
  1. Coppola, G. et al. Functional genomic analysis of frataxin deficiency reveals tissue-specific alterations and identifies the PPARgamma pathway as a therapeutic target in Friedreich’s ataxia. Hum. Mol. Genet. 18, 2452–2461 (2009).
[Article](https://doi.org/10.1093%2Fhmg%2Fddp183)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19376812)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2694693)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXnt1ehtL8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Functional%20genomic%20analysis%20of%20frataxin%20deficiency%20reveals%20tissue-specific%20alterations%20and%20identifies%20the%20PPARgamma%20pathway%20as%20a%20therapeutic%20target%20in%20Friedreich%E2%80%99s%20ataxia&journal=Hum.%20Mol.%20Genet.&doi=10.1093%2Fhmg%2Fddp183&volume=18&pages=2452-2461&publication_year=2009&author=Coppola%2CG) 
  1. Puccio, H. et al. Mouse models for Friedreich ataxia exhibit cardiomyopathy, sensory nerve defect and Fe-S enzyme deficiency followed by intramitochondrial iron deposits. Nat. Genet. 27, 181–186 (2001).
[Article](https://doi.org/10.1038%2F84818)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11175786)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXhtFGktbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mouse%20models%20for%20Friedreich%20ataxia%20exhibit%20cardiomyopathy%2C%20sensory%20nerve%20defect%20and%20Fe-S%20enzyme%20deficiency%20followed%20by%20intramitochondrial%20iron%20deposits&journal=Nat.%20Genet.&doi=10.1038%2F84818&volume=27&pages=181-186&publication_year=2001&author=Puccio%2CH) 
  1. Bradley, J. L. et al. Role of oxidative damage in Friedreich’s ataxia. Neurochem. Res. 29, 561–567 (2004).
[Article](https://doi.org/10.1023%2FB%3ANERE.0000014826.00881.c3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15038603)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXpslWitw%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20oxidative%20damage%20in%20Friedreich%E2%80%99s%20ataxia&journal=Neurochem.%20Res.&doi=10.1023%2FB%3ANERE.0000014826.00881.c3&volume=29&pages=561-567&publication_year=2004&author=Bradley%2CJL) 
  1. Czlonkowska, A. et al. Wilson disease. Nat. Rev. Dis. Prim. 4, 21 (2018).
[Article](https://doi.org/10.1038%2Fs41572-018-0018-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30190489)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Wilson%20disease&journal=Nat.%20Rev.%20Dis.%20Prim.&doi=10.1038%2Fs41572-018-0018-3&volume=4&publication_year=2018&author=Czlonkowska%2CA) 
  1. Chen, J. et al. The molecular mechanisms of copper metabolism and its roles in human diseases. Pflug. Arch. 472, 1415–1429 (2020).
[Article](https://link.springer.com/doi/10.1007/s00424-020-02412-2)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtFSgsr%2FL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20molecular%20mechanisms%20of%20copper%20metabolism%20and%20its%20roles%20in%20human%20diseases&journal=Pflug.%20Arch.&doi=10.1007%2Fs00424-020-02412-2&volume=472&pages=1415-1429&publication_year=2020&author=Chen%2CJ) 
  1. Bandmann, O., Weiss, K. H. & Kaler, S. G. Wilson’s disease and other neurological copper disorders. Lancet Neurol. 14, 103–113 (2015).
[Article](https://doi.org/10.1016%2FS1474-4422%2814%2970190-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25496901)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4336199)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXitFOns7vN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Wilson%E2%80%99s%20disease%20and%20other%20neurological%20copper%20disorders&journal=Lancet%20Neurol.&doi=10.1016%2FS1474-4422%2814%2970190-5&volume=14&pages=103-113&publication_year=2015&author=Bandmann%2CO&author=Weiss%2CKH&author=Kaler%2CSG) 
  1. Li, Y. et al. Iron and copper: critical executioners of ferroptosis, cuproptosis and other forms of cell death. Cell Commun. Signal. 21, 327 (2023).
[Article](https://link.springer.com/doi/10.1186/s12964-023-01267-1)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37974196)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10652626)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXisFGjsLvO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20copper%3A%20critical%20executioners%20of%20ferroptosis%2C%20cuproptosis%20and%20other%20forms%20of%20cell%20death&journal=Cell%20Commun.%20Signal.&doi=10.1186%2Fs12964-023-01267-1&volume=21&publication_year=2023&author=Li%2CY) 
  1. Tsang, T., Davis, C. I. & Brady, D. C. Copper biology. Curr. Biol. 31, R421–R427 (2021).
[Article](https://doi.org/10.1016%2Fj.cub.2021.03.054)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33974864)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtFShu7zP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Copper%20biology&journal=Curr.%20Biol.&doi=10.1016%2Fj.cub.2021.03.054&volume=31&pages=R421-R427&publication_year=2021&author=Tsang%2CT&author=Davis%2CCI&author=Brady%2CDC) 
  1. Xue, Q. et al. Copper metabolism in cell death and autophagy. Autophagy 19, 2175–2195 (2023).
[Article](https://doi.org/10.1080%2F15548627.2023.2200554)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37055935)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10351475)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXot1entbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Copper%20metabolism%20in%20cell%20death%20and%20autophagy&journal=Autophagy&doi=10.1080%2F15548627.2023.2200554&volume=19&pages=2175-2195&publication_year=2023&author=Xue%2CQ) 
  1. Arredondo, M. & Nunez, M. T. Iron and copper metabolism. Mol. Asp. Med. 26, 313–327 (2005).
[Article](https://doi.org/10.1016%2Fj.mam.2005.07.010)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXpslygtbk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20copper%20metabolism&journal=Mol.%20Asp.%20Med.&doi=10.1016%2Fj.mam.2005.07.010&volume=26&pages=313-327&publication_year=2005&author=Arredondo%2CM&author=Nunez%2CMT) 
  1. Doguer, C., Ha, J. H. & Collins, J. F. Intersection of iron and copper metabolism in the mammalian intestine and liver. Compr. Physiol. 8, 1433–1461 (2018).
[Article](https://doi.org/10.1002%2Fcphy.c170045)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30215866)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6460475)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Intersection%20of%20iron%20and%20copper%20metabolism%20in%20the%20mammalian%20intestine%20and%20liver&journal=Compr.%20Physiol.&doi=10.1002%2Fcphy.c170045&volume=8&pages=1433-1461&publication_year=2018&author=Doguer%2CC&author=Ha%2CJH&author=Collins%2CJF) 
  1. Pak, K. et al. Wilson’s disease and iron overload: pathophysiology and therapeutic implications. Clin. Liver Dis. 17, 61–66 (2021).
[Article](https://doi.org/10.1002%2Fcld.986)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Wilson%E2%80%99s%20disease%20and%20iron%20overload%3A%20pathophysiology%20and%20therapeutic%20implications&journal=Clin.%20Liver%20Dis.&doi=10.1002%2Fcld.986&volume=17&pages=61-66&publication_year=2021&author=Pak%2CK) 
  1. Weiskirchen, S., Kim, P. & Weiskirchen, R. Determination of copper poisoning in Wilson’s disease using laser ablation inductively coupled plasma mass spectrometry. Ann. Transl. Med. 7, S72 (2019).
[Article](https://doi.org/10.21037%2Fatm.2018.10.67)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31179309)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531650)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtFKqtr8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Determination%20of%20copper%20poisoning%20in%20Wilson%E2%80%99s%20disease%20using%20laser%20ablation%20inductively%20coupled%20plasma%20mass%20spectrometry&journal=Ann.%20Transl.%20Med.&doi=10.21037%2Fatm.2018.10.67&volume=7&publication_year=2019&author=Weiskirchen%2CS&author=Kim%2CP&author=Weiskirchen%2CR) 
  1. Teschke, R. & Eickhoff, A. Wilson disease: copper-mediated cuproptosis, iron-related ferroptosis, and clinical highlights, with comprehensive and critical analysis update. Int. J. Mol. Sci. 25, 4753 (2024).
  1. Gromadzka, G., Wierzbicka, D., Litwin, T. & Przybylkowski, A. Iron metabolism is disturbed and anti-copper treatment improves but does not normalize iron metabolism in Wilson’s disease. Biometals 34, 407–414 (2021).
[Article](https://link.springer.com/doi/10.1007/s10534-021-00289-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33555495)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7940312)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXjsFGrtb8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20metabolism%20is%20disturbed%20and%20anti-copper%20treatment%20improves%20but%20does%20not%20normalize%20iron%20metabolism%20in%20Wilson%E2%80%99s%20disease&journal=Biometals&doi=10.1007%2Fs10534-021-00289-x&volume=34&pages=407-414&publication_year=2021&author=Gromadzka%2CG&author=Wierzbicka%2CD&author=Litwin%2CT&author=Przybylkowski%2CA) 
  1. Sun, X. et al. Protective effect of curcumin on hepatolenticular degeneration through copper excretion and inhibition of ferroptosis. Phytomedicine 113, 154539 (2023).
[Article](https://doi.org/10.1016%2Fj.phymed.2022.154539)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36898256)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXlslymtbo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Protective%20effect%20of%20curcumin%20on%20hepatolenticular%20degeneration%20through%20copper%20excretion%20and%20inhibition%20of%20ferroptosis&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2022.154539&volume=113&publication_year=2023&author=Sun%2CX) 
  1. Ghobadi, M. et al. Ferulic acid ameliorates cell injuries, cognitive and motor impairments in cuprizone-induced demyelination model of multiple sclerosis. Cell J. 24, 681–688 (2022).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36377218)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9663966)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferulic%20acid%20ameliorates%20cell%20injuries%2C%20cognitive%20and%20motor%20impairments%20in%20cuprizone-induced%20demyelination%20model%20of%20multiple%20sclerosis&journal=Cell%20J.&volume=24&pages=681-688&publication_year=2022&author=Ghobadi%2CM) 
  1. Wang, H. et al. Ferulic acid attenuates diabetes-induced cognitive impairment in rats via regulation of PTP1B and insulin signaling pathway. Physiol. Behav. 182, 93–100 (2017).
[Article](https://doi.org/10.1016%2Fj.physbeh.2017.10.001)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28988132)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1Kqsb7P)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferulic%20acid%20attenuates%20diabetes-induced%20cognitive%20impairment%20in%20rats%20via%20regulation%20of%20PTP1B%20and%20insulin%20signaling%20pathway&journal=Physiol.%20Behav.&doi=10.1016%2Fj.physbeh.2017.10.001&volume=182&pages=93-100&publication_year=2017&author=Wang%2CH) 
  1. Wang, X. et al. Ferulic acid activates SIRT1-mediated ferroptosis signaling pathway to improve cognition dysfunction in Wilson’s disease. Neuropsychiatr. Dis. Treat. 19, 2681–2696 (2023).
[Article](https://doi.org/10.2147%2FNDT.S443278)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38077239)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10710261)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXis1Gis7jP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferulic%20acid%20activates%20SIRT1-mediated%20ferroptosis%20signaling%20pathway%20to%20improve%20cognition%20dysfunction%20in%20Wilson%E2%80%99s%20disease&journal=Neuropsychiatr.%20Dis.%20Treat.&doi=10.2147%2FNDT.S443278&volume=19&pages=2681-2696&publication_year=2023&author=Wang%2CX) 
  1. Duan, D. et al. Duchenne muscular dystrophy. Nat. Rev. Dis. Prim. 7, 13 (2021).
[Article](https://doi.org/10.1038%2Fs41572-021-00248-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33602943)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Duchenne%20muscular%20dystrophy&journal=Nat.%20Rev.%20Dis.%20Prim.&doi=10.1038%2Fs41572-021-00248-3&volume=7&publication_year=2021&author=Duan%2CD) 
  1. Alves, F. M. et al. Iron overload and impaired iron handling contribute to the dystrophic pathology in models of Duchenne muscular dystrophy. J. Cachexia Sarcopenia Muscle 13, 1541–1553 (2022).
[Article](https://doi.org/10.1002%2Fjcsm.12950)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35249268)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9178167)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20overload%20and%20impaired%20iron%20handling%20contribute%20to%20the%20dystrophic%20pathology%20in%20models%20of%20Duchenne%20muscular%20dystrophy&journal=J.%20Cachexia%20Sarcopenia%20Muscle&doi=10.1002%2Fjcsm.12950&volume=13&pages=1541-1553&publication_year=2022&author=Alves%2CFM) 
  1. Bornman, L., Rossouw, H., Gericke, G. S. & Polla, B. S. Effects of iron deprivation on the pathology and stress protein expression in murine X-linked muscular dystrophy. Biochem. Pharm. 56, 751–757 (1998).
[Article](https://doi.org/10.1016%2FS0006-2952%2898%2900055-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9751080)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1cXmtlCisL8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effects%20of%20iron%20deprivation%20on%20the%20pathology%20and%20stress%20protein%20expression%20in%20murine%20X-linked%20muscular%20dystrophy&journal=Biochem.%20Pharm.&doi=10.1016%2FS0006-2952%2898%2900055-0&volume=56&pages=751-757&publication_year=1998&author=Bornman%2CL&author=Rossouw%2CH&author=Gericke%2CGS&author=Polla%2CBS) 
  1. van der Wal, H. H. et al. Iron deficiency in worsening heart failure is associated with reduced estimated protein intake, fluid retention, inflammation, and antiplatelet use. Eur. Heart J. 40, 3616–3625 (2019).
[Article](https://doi.org/10.1093%2Feurheartj%2Fehz680)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31556953)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6868426)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20deficiency%20in%20worsening%20heart%20failure%20is%20associated%20with%20reduced%20estimated%20protein%20intake%2C%20fluid%20retention%2C%20inflammation%2C%20and%20antiplatelet%20use&journal=Eur.%20Heart%20J.&doi=10.1093%2Feurheartj%2Fehz680&volume=40&pages=3616-3625&publication_year=2019&author=Wal%2CHH) 
  1. van der Meer, P., van der Wal, H. H. & Melenovsky, V. Mitochondrial function, skeletal muscle metabolism, and iron deficiency in heart failure. Circulation 139, 2399–2402 (2019).
[Article](https://doi.org/10.1161%2FCIRCULATIONAHA.119.040134)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31107619)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20function%2C%20skeletal%20muscle%20metabolism%2C%20and%20iron%20deficiency%20in%20heart%20failure&journal=Circulation&doi=10.1161%2FCIRCULATIONAHA.119.040134&volume=139&pages=2399-2402&publication_year=2019&author=Meer%2CP&author=Wal%2CHH&author=Melenovsky%2CV) 
  1. Wu, X., Li, Y., Zhang, S. & Zhou, X. Ferroptosis as a novel therapeutic target for cardiovascular disease. Theranostics 11, 3052–3059 (2021).
[Article](https://doi.org/10.7150%2Fthno.54113)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33537073)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7847684)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXmtF2js70%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20as%20a%20novel%20therapeutic%20target%20for%20cardiovascular%20disease&journal=Theranostics&doi=10.7150%2Fthno.54113&volume=11&pages=3052-3059&publication_year=2021&author=Wu%2CX&author=Li%2CY&author=Zhang%2CS&author=Zhou%2CX) 
  1. Ambrosy, A. P. et al. A reduced transferrin saturation is independently associated with excess morbidity and mortality in older adults with heart failure and incident anemia. Int. J. Cardiol. 309, 95–99 (2020).
[Article](https://doi.org/10.1016%2Fj.ijcard.2020.03.020)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32201101)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20reduced%20transferrin%20saturation%20is%20independently%20associated%20with%20excess%20morbidity%20and%20mortality%20in%20older%20adults%20with%20heart%20failure%20and%20incident%20anemia&journal=Int.%20J.%20Cardiol.&doi=10.1016%2Fj.ijcard.2020.03.020&volume=309&pages=95-99&publication_year=2020&author=Ambrosy%2CAP) 
  1. Guo, Y. et al. Ferroptosis in cardiovascular diseases: current status, challenges, and future perspectives. Biomolecules 12, 390 (2022).
  1. Baman, J. R. & Ahmad, F. S. Heart Failure. JAMA 324, 1015 (2020).
[Article](https://doi.org/10.1001%2Fjama.2020.13310)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32749448)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Heart%20Failure&journal=JAMA&doi=10.1001%2Fjama.2020.13310&volume=324&publication_year=2020&author=Baman%2CJR&author=Ahmad%2CFS) 
  1. Fang, X. et al. Dietary intake of heme iron and risk of cardiovascular disease: a dose-response meta-analysis of prospective cohort studies. Nutr. Metab. Cardiovasc. Dis. 25, 24–35 (2015).
[Article](https://doi.org/10.1016%2Fj.numecd.2014.09.002)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25439662)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhslagu7zN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dietary%20intake%20of%20heme%20iron%20and%20risk%20of%20cardiovascular%20disease%3A%20a%20dose-response%20meta-analysis%20of%20prospective%20cohort%20studies&journal=Nutr.%20Metab.%20Cardiovasc.%20Dis.&doi=10.1016%2Fj.numecd.2014.09.002&volume=25&pages=24-35&publication_year=2015&author=Fang%2CX) 
  1. Zhang, H., Zhabyeyev, P., Wang, S. & Oudit, G. Y. Role of iron metabolism in heart failure: from iron deficiency to iron overload. Biochim. Biophys. Acta Mol. Basis Dis. 1865, 1925–1937 (2019).
[Article](https://doi.org/10.1016%2Fj.bbadis.2018.08.030)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31109456)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXhs1Chu73J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20iron%20metabolism%20in%20heart%20failure%3A%20from%20iron%20deficiency%20to%20iron%20overload&journal=Biochim.%20Biophys.%20Acta%20Mol.%20Basis%20Dis.&doi=10.1016%2Fj.bbadis.2018.08.030&volume=1865&pages=1925-1937&publication_year=2019&author=Zhang%2CH&author=Zhabyeyev%2CP&author=Wang%2CS&author=Oudit%2CGY) 
  1. Xiong, Y. et al. Inhibition of ferroptosis reverses heart failure with preserved ejection fraction in mice. J. Transl. Med. 22, 199 (2024).
[Article](https://link.springer.com/doi/10.1186/s12967-023-04734-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38402404)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10894491)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXksFKntbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20ferroptosis%20reverses%20heart%20failure%20with%20preserved%20ejection%20fraction%20in%20mice&journal=J.%20Transl.%20Med.&doi=10.1186%2Fs12967-023-04734-y&volume=22&publication_year=2024&author=Xiong%2CY) 
  1. Gu, J. J. et al. Identification of ferroptosis-related genes in heart failure induced by transverse aortic constriction. J. Inflamm. Res. 16, 4899–4912 (2023).
[Article](https://doi.org/10.2147%2FJIR.S433387)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37927963)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10625389)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitlCltr3E)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identification%20of%20ferroptosis-related%20genes%20in%20heart%20failure%20induced%20by%20transverse%20aortic%20constriction&journal=J.%20Inflamm.%20Res.&doi=10.2147%2FJIR.S433387&volume=16&pages=4899-4912&publication_year=2023&author=Gu%2CJJ) 
  1. Ito, J. et al. Iron derived from autophagy-mediated ferritin degradation induces cardiomyocyte death and heart failure in mice. Elife 10, e62174 (2021).
  1. Acoba, M. G. et al. The mitochondrial carrier SFXN1 is critical for complex III integrity and cellular metabolism. Cell Rep. 34, 108869 (2021).
[Article](https://doi.org/10.1016%2Fj.celrep.2021.108869)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33730581)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8048093)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXmvFGrsb8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20mitochondrial%20carrier%20SFXN1%20is%20critical%20for%20complex%20III%20integrity%20and%20cellular%20metabolism&journal=Cell%20Rep.&doi=10.1016%2Fj.celrep.2021.108869&volume=34&publication_year=2021&author=Acoba%2CMG) 
  1. Tang, M. et al. Ferritinophagy activation and sideroflexin1-dependent mitochondria iron overload is involved in apelin-13-induced cardiomyocytes hypertrophy. Free Radic. Biol. Med. 134, 445–457 (2019).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2019.01.052)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30731113)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXis1WktrY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferritinophagy%20activation%20and%20sideroflexin1-dependent%20mitochondria%20iron%20overload%20is%20involved%20in%20apelin-13-induced%20cardiomyocytes%20hypertrophy&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2019.01.052&volume=134&pages=445-457&publication_year=2019&author=Tang%2CM) 
  1. Omiya, S. et al. Downregulation of ferritin heavy chain increases labile iron pool, oxidative stress and cell death in cardiomyocytes. J. Mol. Cell Cardiol. 46, 59–66 (2009).
[Article](https://doi.org/10.1016%2Fj.yjmcc.2008.09.714)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18992754)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXhsV2ltb3L)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Downregulation%20of%20ferritin%20heavy%20chain%20increases%20labile%20iron%20pool%2C%20oxidative%20stress%20and%20cell%20death%20in%20cardiomyocytes&journal=J.%20Mol.%20Cell%20Cardiol.&doi=10.1016%2Fj.yjmcc.2008.09.714&volume=46&pages=59-66&publication_year=2009&author=Omiya%2CS) 
  1. Zhang, X. et al. SLC7A11/xCT prevents cardiac hypertrophy by inhibiting ferroptosis. Cardiovasc. Drugs Ther. 36, 437–447 (2022).
[Article](https://link.springer.com/doi/10.1007/s10557-021-07220-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34259984)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXitFGku7rL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=SLC7A11%2FxCT%20prevents%20cardiac%20hypertrophy%20by%20inhibiting%20ferroptosis&journal=Cardiovasc.%20Drugs%20Ther.&doi=10.1007%2Fs10557-021-07220-z&volume=36&pages=437-447&publication_year=2022&author=Zhang%2CX) 
  1. Wang, J. et al. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis. 11, 574 (2020).
[Article](https://doi.org/10.1038%2Fs41419-020-02777-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32710001)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7382480)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsVGlurjI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pyroptosis%20and%20ferroptosis%20induced%20by%20mixed%20lineage%20kinase%203%20%28MLK3%29%20signaling%20in%20cardiomyocytes%20are%20essential%20for%20myocardial%20fibrosis%20in%20response%20to%20pressure%20overload&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-020-02777-3&volume=11&publication_year=2020&author=Wang%2CJ) 
  1. Chen, X., Xu, S., Zhao, C. & Liu, B. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem. Biophys. Res. Commun. 516, 37–43 (2019).
[Article](https://doi.org/10.1016%2Fj.bbrc.2019.06.015)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31196626)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhtFeqt73N)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20TLR4%2FNADPH%20oxidase%204%20pathway%20in%20promoting%20cell%20death%20through%20autophagy%20and%20ferroptosis%20during%20heart%20failure&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2019.06.015&volume=516&pages=37-43&publication_year=2019&author=Chen%2CX&author=Xu%2CS&author=Zhao%2CC&author=Liu%2CB) 
  1. Liu, B. et al. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem. Biophys. Res. Commun. 497, 233–240 (2018).
[Article](https://doi.org/10.1016%2Fj.bbrc.2018.02.061)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29427658)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXisFOitrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Puerarin%20protects%20against%20heart%20failure%20induced%20by%20pressure%20overload%20through%20mitigation%20of%20ferroptosis&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2018.02.061&volume=497&pages=233-240&publication_year=2018&author=Liu%2CB) 
  1. Ma, S. et al. Canagliflozin mitigates ferroptosis and ameliorates heart failure in rats with preserved ejection fraction. Naunyn Schmiedebergs Arch. Pharm. 395, 945–962 (2022).
[Article](https://link.springer.com/doi/10.1007/s00210-022-02243-1)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhtFersLvJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Canagliflozin%20mitigates%20ferroptosis%20and%20ameliorates%20heart%20failure%20in%20rats%20with%20preserved%20ejection%20fraction&journal=Naunyn%20Schmiedebergs%20Arch.%20Pharm.&doi=10.1007%2Fs00210-022-02243-1&volume=395&pages=945-962&publication_year=2022&author=Ma%2CS) 
  1. Packer, M. Potential interactions when prescribing SGLT2 inhibitors and intravenous iron in combination in heart failure. JACC Heart Fail. 11, 106–114 (2023).
[Article](https://doi.org/10.1016%2Fj.jchf.2022.10.004)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36396554)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Potential%20interactions%20when%20prescribing%20SGLT2%20inhibitors%20and%20intravenous%20iron%20in%20combination%20in%20heart%20failure&journal=JACC%20Heart%20Fail.&doi=10.1016%2Fj.jchf.2022.10.004&volume=11&pages=106-114&publication_year=2023&author=Packer%2CM) 
  1. Yagi, M. et al. Improving lysosomal ferroptosis with NMN administration protects against heart failure. Life Sci. Alliance 6, e202302116 (2023).
  1. Yang, X. et al. Ferroptosis in heart failure. J. Mol. Cell Cardiol. 173, 141–153 (2022).
[Article](https://doi.org/10.1016%2Fj.yjmcc.2022.10.004)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36273661)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11225968)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XivVSnsLvN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20in%20heart%20failure&journal=J.%20Mol.%20Cell%20Cardiol.&doi=10.1016%2Fj.yjmcc.2022.10.004&volume=173&pages=141-153&publication_year=2022&author=Yang%2CX) 
  1. Bi et al. Characterization of ferroptosis-triggered pyroptotic signaling in heart failure. Signal Transduct Target Ther. https://doi.org/10.1038/s41392-024-01962-6 (2024).
  1. Li, D. et al. Role of acetylation in doxorubicin-induced cardiotoxicity. Redox Biol. 46, 102089 (2021).
[Article](https://doi.org/10.1016%2Fj.redox.2021.102089)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34364220)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8350499)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhslGntbvE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20acetylation%20in%20doxorubicin-induced%20cardiotoxicity&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2021.102089&volume=46&publication_year=2021&author=Li%2CD) 
  1. Lyu, Y. L. et al. Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res. 67, 8839–8846 (2007).
[Article](https://doi.org/10.1158%2F0008-5472.CAN-07-1649)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17875725)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtVCit7jK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Topoisomerase%20IIbeta%20mediated%20DNA%20double-strand%20breaks%3A%20implications%20in%20doxorubicin%20cardiotoxicity%20and%20prevention%20by%20dexrazoxane&journal=Cancer%20Res.&doi=10.1158%2F0008-5472.CAN-07-1649&volume=67&pages=8839-8846&publication_year=2007&author=Lyu%2CYL) 
  1. Koleini, N. et al. Oxidized phospholipids in Doxorubicin-induced cardiotoxicity. Chem. Biol. Interact. 303, 35–39 (2019).
[Article](https://doi.org/10.1016%2Fj.cbi.2019.01.032)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30707978)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXktFaqsLk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oxidized%20phospholipids%20in%20Doxorubicin-induced%20cardiotoxicity&journal=Chem.%20Biol.%20Interact.&doi=10.1016%2Fj.cbi.2019.01.032&volume=303&pages=35-39&publication_year=2019&author=Koleini%2CN) 
  1. Ichikawa, Y. et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J. Clin. Investig. 124, 617–630 (2014).
[Article](https://doi.org/10.1172%2FJCI72931)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24382354)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3904631)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXis1ert7g%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cardiotoxicity%20of%20doxorubicin%20is%20mediated%20through%20mitochondrial%20iron%20accumulation&journal=J.%20Clin.%20Investig.&doi=10.1172%2FJCI72931&volume=124&pages=617-630&publication_year=2014&author=Ichikawa%2CY) 
  1. Tadokoro, T. et al. Mitochondria-dependent ferroptosis plays a pivotal role in doxorubicin cardiotoxicity. JCI Insight 5, e132747 (2020).
  1. Singh, P. et al. Sulforaphane protects the heart from doxorubicin-induced toxicity. Free Radic. Biol. Med. 86, 90–101 (2015).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2015.05.028)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26025579)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4554811)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtFaitLbI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Sulforaphane%20protects%20the%20heart%20from%20doxorubicin-induced%20toxicity&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2015.05.028&volume=86&pages=90-101&publication_year=2015&author=Singh%2CP) 
  1. Koh, J. S. et al. Protective effect of cilostazol against doxorubicin-induced cardiomyopathy in mice. Free Radic. Biol. Med. 89, 54–61 (2015).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2015.07.016)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26191652)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsV2ns7fJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Protective%20effect%20of%20cilostazol%20against%20doxorubicin-induced%20cardiomyopathy%20in%20mice&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2015.07.016&volume=89&pages=54-61&publication_year=2015&author=Koh%2CJS) 
  1. Shi, S. et al. Role of oxidative stress and inflammation-related signaling pathways in doxorubicin-induced cardiomyopathy. Cell Commun. Signal. 21, 61 (2023).
[Article](https://link.springer.com/doi/10.1186/s12964-023-01077-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36918950)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10012797)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXlvFCru7k%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20oxidative%20stress%20and%20inflammation-related%20signaling%20pathways%20in%20doxorubicin-induced%20cardiomyopathy&journal=Cell%20Commun.%20Signal.&doi=10.1186%2Fs12964-023-01077-5&volume=21&publication_year=2023&author=Shi%2CS) 
  1. Fang, X. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA 116, 2672–2680 (2019).
[Article](https://doi.org/10.1073%2Fpnas.1821022116)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30692261)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6377499)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXivVajsb0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20as%20a%20target%20for%20protection%20against%20cardiomyopathy&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1821022116&volume=116&pages=2672-2680&publication_year=2019&author=Fang%2CX) 
  1. Behring, J. B. et al. Does reversible cysteine oxidation link the Western diet to cardiac dysfunction? FASEB J. 28, 1975–1987 (2014).
[Article](https://doi.org/10.1096%2Ffj.13-233445)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24469991)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046179)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvFOhsL%2FE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Does%20reversible%20cysteine%20oxidation%20link%20the%20Western%20diet%20to%20cardiac%20dysfunction%3F&journal=FASEB%20J.&doi=10.1096%2Ffj.13-233445&volume=28&pages=1975-1987&publication_year=2014&author=Behring%2CJB) 
  1. Li, N. et al. Ferroptosis and its emerging roles in cardiovascular diseases. Pharm. Res. 166, 105466 (2021).
[Article](https://doi.org/10.1016%2Fj.phrs.2021.105466)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXmvVKktb8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20and%20its%20emerging%20roles%20in%20cardiovascular%20diseases&journal=Pharm.%20Res.&doi=10.1016%2Fj.phrs.2021.105466&volume=166&publication_year=2021&author=Li%2CN) 
  1. Wang, N. et al. HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes. J. Mol. Cell Cardiol. 150, 65–76 (2021).
[Article](https://doi.org/10.1016%2Fj.yjmcc.2020.10.010)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33098823)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXit12ksb3F)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=HSF1%20functions%20as%20a%20key%20defender%20against%20palmitic%20acid-induced%20ferroptosis%20in%20cardiomyocytes&journal=J.%20Mol.%20Cell%20Cardiol.&doi=10.1016%2Fj.yjmcc.2020.10.010&volume=150&pages=65-76&publication_year=2021&author=Wang%2CN) 
  1. Berdaweel, I. A. et al. Iron scavenging and suppression of collagen cross-linking underlie antifibrotic effects of carnosine in the heart with obesity. Front. Pharm. 14, 1275388 (2023).
[Article](https://doi.org/10.3389%2Ffphar.2023.1275388)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXosVSisrs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20scavenging%20and%20suppression%20of%20collagen%20cross-linking%20underlie%20antifibrotic%20effects%20of%20carnosine%20in%20the%20heart%20with%20obesity&journal=Front.%20Pharm.&doi=10.3389%2Ffphar.2023.1275388&volume=14&publication_year=2023&author=Berdaweel%2CIA) 
  1. Uriho, A. et al. Benefits of blended oil consumption over other sources of lipids on the cardiovascular system in obese rats. Food Funct. 10, 5290–5301 (2019).
[Article](https://doi.org/10.1039%2FC9FO01353A)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31475703)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhsFGjurfN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Benefits%20of%20blended%20oil%20consumption%20over%20other%20sources%20of%20lipids%20on%20the%20cardiovascular%20system%20in%20obese%20rats&journal=Food%20Funct.&doi=10.1039%2FC9FO01353A&volume=10&pages=5290-5301&publication_year=2019&author=Uriho%2CA) 
  1. Ramprasath, T. & Selvam, G. S. Potential impact of genetic variants in Nrf2 regulated antioxidant genes and risk prediction of diabetes and associated cardiac complications. Curr. Med. Chem. 20, 4680–4693 (2013).
[Article](https://doi.org/10.2174%2F09298673113209990154)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23834171)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhvFWrsLjN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Potential%20impact%20of%20genetic%20variants%20in%20Nrf2%20regulated%20antioxidant%20genes%20and%20risk%20prediction%20of%20diabetes%20and%20associated%20cardiac%20complications&journal=Curr.%20Med.%20Chem.&doi=10.2174%2F09298673113209990154&volume=20&pages=4680-4693&publication_year=2013&author=Ramprasath%2CT&author=Selvam%2CGS) 
  1. Lejay, A. et al. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J. Mol. Cell Cardiol. 91, 11–22 (2016).
[Article](https://doi.org/10.1016%2Fj.yjmcc.2015.12.020)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26718721)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XjtFGmtw%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ischemia%20reperfusion%20injury%2C%20ischemic%20conditioning%20and%20diabetes%20mellitus&journal=J.%20Mol.%20Cell%20Cardiol.&doi=10.1016%2Fj.yjmcc.2015.12.020&volume=91&pages=11-22&publication_year=2016&author=Lejay%2CA) 
  1. Dillmann, W. H. Diabetic cardiomyopathy. Circ. Res. 124, 1160–1162 (2019).
[Article](https://doi.org/10.1161%2FCIRCRESAHA.118.314665)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30973809)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6578576)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXnt1elsbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Diabetic%20cardiomyopathy&journal=Circ.%20Res.&doi=10.1161%2FCIRCRESAHA.118.314665&volume=124&pages=1160-1162&publication_year=2019&author=Dillmann%2CWH) 
  1. Wu, Y. et al. Retinol dehydrogenase 10 reduction mediated retinol metabolism disorder promotes diabetic cardiomyopathy in male mice. Nat. Commun. 14, 1181 (2023).
[Article](https://doi.org/10.1038%2Fs41467-023-36837-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36864033)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9981688)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXkvVGgsbc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Retinol%20dehydrogenase%2010%20reduction%20mediated%20retinol%20metabolism%20disorder%20promotes%20diabetic%20cardiomyopathy%20in%20male%20mice&journal=Nat.%20Commun.&doi=10.1038%2Fs41467-023-36837-x&volume=14&publication_year=2023&author=Wu%2CY) 
  1. Katunga, L. A. et al. Obesity in a model of gpx4 haploinsufficiency uncovers a causal role for lipid-derived aldehydes in human metabolic disease and cardiomyopathy. Mol. Metab. 4, 493–506 (2015).
[Article](https://doi.org/10.1016%2Fj.molmet.2015.04.001)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26042203)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4443294)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXnt1SqsLs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Obesity%20in%20a%20model%20of%20gpx4%20haploinsufficiency%20uncovers%20a%20causal%20role%20for%20lipid-derived%20aldehydes%20in%20human%20metabolic%20disease%20and%20cardiomyopathy&journal=Mol.%20Metab.&doi=10.1016%2Fj.molmet.2015.04.001&volume=4&pages=493-506&publication_year=2015&author=Katunga%2CLA) 
  1. Baseler, W. A. et al. Reversal of mitochondrial proteomic loss in Type 1 diabetic heart with overexpression of phospholipid hydroperoxide glutathione peroxidase. Am. J. Physiol. Regul. Integr. Comp. Physiol. 304, R553–R565 (2013).
[Article](https://doi.org/10.1152%2Fajpregu.00249.2012)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23408027)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3627941)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXnsV2ntr4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Reversal%20of%20mitochondrial%20proteomic%20loss%20in%20Type%201%20diabetic%20heart%20with%20overexpression%20of%20phospholipid%20hydroperoxide%20glutathione%20peroxidase&journal=Am.%20J.%20Physiol.%20Regul.%20Integr.%20Comp.%20Physiol.&doi=10.1152%2Fajpregu.00249.2012&volume=304&pages=R553-R565&publication_year=2013&author=Baseler%2CWA) 
  1. Wang, X. et al. Ferroptosis is essential for diabetic cardiomyopathy and is prevented by sulforaphane via AMPK/NRF2 pathways. Acta Pharm. Sin. B 12, 708–722 (2022).
[Article](https://doi.org/10.1016%2Fj.apsb.2021.10.005)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35256941)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20is%20essential%20for%20diabetic%20cardiomyopathy%20and%20is%20prevented%20by%20sulforaphane%20via%20AMPK%2FNRF2%20pathways&journal=Acta%20Pharm.%20Sin.%20B&doi=10.1016%2Fj.apsb.2021.10.005&volume=12&pages=708-722&publication_year=2022&author=Wang%2CX) 
  1. Gu, J. et al. Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy. Diabetes 66, 529–542 (2017).
[Article](https://doi.org/10.2337%2Fdb15-1274)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27903744)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXptVOgt7k%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metallothionein%20is%20downstream%20of%20Nrf2%20and%20partially%20mediates%20sulforaphane%20prevention%20of%20diabetic%20cardiomyopathy&journal=Diabetes&doi=10.2337%2Fdb15-1274&volume=66&pages=529-542&publication_year=2017&author=Gu%2CJ) 
  1. Wei, Z., Shaohuan, Q., Pinfang, K. & Chao, S. Curcumin attenuates ferroptosis-induced myocardial injury in diabetic cardiomyopathy through the Nrf2 pathway. Cardiovasc. Ther. 2022, 3159717 (2022).
[Article](https://doi.org/10.1155%2F2022%2F3159717)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35909950)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9307414)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Curcumin%20attenuates%20ferroptosis-induced%20myocardial%20injury%20in%20diabetic%20cardiomyopathy%20through%20the%20Nrf2%20pathway&journal=Cardiovasc.%20Ther.&doi=10.1155%2F2022%2F3159717&volume=2022&publication_year=2022&author=Wei%2CZ&author=Shaohuan%2CQ&author=Pinfang%2CK&author=Chao%2CS) 
  1. Li, F., Hu, Z., Huang, Y. & Zhan, H. Dexmedetomidine ameliorates diabetic cardiomyopathy by inhibiting ferroptosis through the Nrf2/GPX4 pathway. J. Cardiothorac. Surg. 18, 223 (2023).
[Article](https://link.springer.com/doi/10.1186/s13019-023-02300-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37430319)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10334540)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dexmedetomidine%20ameliorates%20diabetic%20cardiomyopathy%20by%20inhibiting%20ferroptosis%20through%20the%20Nrf2%2FGPX4%20pathway&journal=J.%20Cardiothorac.%20Surg.&doi=10.1186%2Fs13019-023-02300-7&volume=18&publication_year=2023&author=Li%2CF&author=Hu%2CZ&author=Huang%2CY&author=Zhan%2CH) 
  1. Wu, S. et al. Upregulation of NF-kappaB by USP24 aggravates ferroptosis in diabetic cardiomyopathy. Free Radic. Biol. Med. 210, 352–366 (2024).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2023.11.032)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38056575)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXisFGrtbbL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Upregulation%20of%20NF-kappaB%20by%20USP24%20aggravates%20ferroptosis%20in%20diabetic%20cardiomyopathy&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2023.11.032&volume=210&pages=352-366&publication_year=2024&author=Wu%2CS) 
  1. Li, X. et al. Astragaloside IV attenuates myocardial dysfunction in diabetic cardiomyopathy rats through downregulation of CD36-mediated ferroptosis. Phytother. Res. 37, 3042–3056 (2023).
[Article](https://doi.org/10.1002%2Fptr.7798)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36882189)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXltlGntbk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Astragaloside%20IV%20attenuates%20myocardial%20dysfunction%20in%20diabetic%20cardiomyopathy%20rats%20through%20downregulation%20of%20CD36-mediated%20ferroptosis&journal=Phytother.%20Res.&doi=10.1002%2Fptr.7798&volume=37&pages=3042-3056&publication_year=2023&author=Li%2CX) 
  1. Tang, Y. J. et al. Irisin attenuates type 1 diabetic cardiomyopathy by anti-ferroptosis via SIRT1-mediated deacetylation of p53. Cardiovasc. Diabetol. 23, 116 (2024).
[Article](https://link.springer.com/doi/10.1186/s12933-024-02183-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38566123)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10985893)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXntleltbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Irisin%20attenuates%20type%201%20diabetic%20cardiomyopathy%20by%20anti-ferroptosis%20via%20SIRT1-mediated%20deacetylation%20of%20p53&journal=Cardiovasc.%20Diabetol.&doi=10.1186%2Fs12933-024-02183-5&volume=23&publication_year=2024&author=Tang%2CYJ) 
  1. Chen, Z. et al. Nicorandil alleviates cardiac microvascular ferroptosis in diabetic cardiomyopathy: role of the mitochondria-localized AMPK-Parkin-ACSL4 signaling pathway. Pharm. Res. 200, 107057 (2024).
[Article](https://doi.org/10.1016%2Fj.phrs.2024.107057)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXitVGhu7Y%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nicorandil%20alleviates%20cardiac%20microvascular%20ferroptosis%20in%20diabetic%20cardiomyopathy%3A%20role%20of%20the%20mitochondria-localized%20AMPK-Parkin-ACSL4%20signaling%20pathway&journal=Pharm.%20Res.&doi=10.1016%2Fj.phrs.2024.107057&volume=200&publication_year=2024&author=Chen%2CZ) 
  1. Iqbal, S., Jabeen, F., Kahwa, I. & Omara, T. Suberosin alleviates thiazolidinedione-induced cardiomyopathy in diabetic rats by inhibiting ferroptosis via modulation of ACSL4-LPCAT3 and PI3K-AKT signaling pathways. Cardiovasc. Toxicol. 23, 295–304 (2023).
[Article](https://link.springer.com/doi/10.1007/s12012-023-09804-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37676618)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFSgtb3L)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Suberosin%20alleviates%20thiazolidinedione-induced%20cardiomyopathy%20in%20diabetic%20rats%20by%20inhibiting%20ferroptosis%20via%20modulation%20of%20ACSL4-LPCAT3%20and%20PI3K-AKT%20signaling%20pathways&journal=Cardiovasc.%20Toxicol.&doi=10.1007%2Fs12012-023-09804-7&volume=23&pages=295-304&publication_year=2023&author=Iqbal%2CS&author=Jabeen%2CF&author=Kahwa%2CI&author=Omara%2CT) 
  1. Kilic, A. et al. Outcomes of the first 1300 adult heart transplants in the united states after the allocation policy change. Circulation 141, 1662–1664 (2020).
[Article](https://doi.org/10.1161%2FCIRCULATIONAHA.119.045354)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32421414)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Outcomes%20of%20the%20first%201300%20adult%20heart%20transplants%20in%20the%20united%20states%20after%20the%20allocation%20policy%20change&journal=Circulation&doi=10.1161%2FCIRCULATIONAHA.119.045354&volume=141&pages=1662-1664&publication_year=2020&author=Kilic%2CA) 
  1. Zhu, Y. et al. Cirbp suppression compromises DHODH-mediated ferroptosis defense and attenuates hypothermic cardioprotection in an aged donor transplantation model. J. Clin. Investig. 134, e175645 (2024).
  1. Li, W. et al. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J. Clin. Investig. 129, 2293–2304 (2019).
[Article](https://doi.org/10.1172%2FJCI126428)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30830879)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6546457)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptotic%20cell%20death%20and%20TLR4%2FTrif%20signaling%20initiate%20neutrophil%20recruitment%20after%20heart%20transplantation&journal=J.%20Clin.%20Investig.&doi=10.1172%2FJCI126428&volume=129&pages=2293-2304&publication_year=2019&author=Li%2CW) 
  1. Zhu, Y. et al. Type A aortic dissection-experience over 5 decades: JACC Historical Breakthroughs In Perspective. J. Am. Coll. Cardiol. 76, 1703–1713 (2020).
[Article](https://doi.org/10.1016%2Fj.jacc.2020.07.061)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33004136)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Type%20A%20aortic%20dissection-experience%20over%205%20decades%3A%20JACC%20Historical%20Breakthroughs%20In%20Perspective&journal=J.%20Am.%20Coll.%20Cardiol.&doi=10.1016%2Fj.jacc.2020.07.061&volume=76&pages=1703-1713&publication_year=2020&author=Zhu%2CY) 
  1. Rylski, B., Schilling, O. & Czerny, M. Acute aortic dissection: evidence, uncertainties, and future therapies. Eur. Heart J. 44, 813–821 (2023).
[Article](https://doi.org/10.1093%2Feurheartj%2Fehac757)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36540036)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Acute%20aortic%20dissection%3A%20evidence%2C%20uncertainties%2C%20and%20future%20therapies&journal=Eur.%20Heart%20J.&doi=10.1093%2Feurheartj%2Fehac757&volume=44&pages=813-821&publication_year=2023&author=Rylski%2CB&author=Schilling%2CO&author=Czerny%2CM) 
  1. Li, N. et al. Targeting ferroptosis as a novel approach to alleviate aortic dissection. Int J. Biol. Sci. 18, 4118–4134 (2022).
[Article](https://doi.org/10.7150%2Fijbs.72528)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35844806)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9274489)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhvVOks7rO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20ferroptosis%20as%20a%20novel%20approach%20to%20alleviate%20aortic%20dissection&journal=Int%20J.%20Biol.%20Sci.&doi=10.7150%2Fijbs.72528&volume=18&pages=4118-4134&publication_year=2022&author=Li%2CN) 
  1. Chen, Y. et al. BRD4770 functions as a novel ferroptosis inhibitor to protect against aortic dissection. Pharm. Res. 177, 106122 (2022).
[Article](https://doi.org/10.1016%2Fj.phrs.2022.106122)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xht1ahsrvN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=BRD4770%20functions%20as%20a%20novel%20ferroptosis%20inhibitor%20to%20protect%20against%20aortic%20dissection&journal=Pharm.%20Res.&doi=10.1016%2Fj.phrs.2022.106122&volume=177&publication_year=2022&author=Chen%2CY) 
  1. Chen, Y., Yi, X., Wei, X. & Jiang, D. S. Ferroptosis: a novel pathological mechanism of aortic dissection. Pharm. Res. 182, 106351 (2022).
[Article](https://doi.org/10.1016%2Fj.phrs.2022.106351)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XitVWgtLjF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20a%20novel%20pathological%20mechanism%20of%20aortic%20dissection&journal=Pharm.%20Res.&doi=10.1016%2Fj.phrs.2022.106351&volume=182&publication_year=2022&author=Chen%2CY&author=Yi%2CX&author=Wei%2CX&author=Jiang%2CDS) 
  1. Liao, M. et al. METTL3-mediated m6A modification of NORAD inhibits the ferroptosis of vascular smooth muscle cells to attenuate the aortic dissection progression in an YTHDF2-dependent manner. Mol. Cell. Biochem. https://doi.org/10.1007/s11010-024-04930-4 (2024).
  1. Puylaert, P. et al. Regulated necrosis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 42, 1283–1306 (2022).
[Article](https://doi.org/10.1161%2FATVBAHA.122.318177)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36134566)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XislaksrbO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulated%20necrosis%20in%20atherosclerosis&journal=Arterioscler.%20Thromb.%20Vasc.%20Biol.&doi=10.1161%2FATVBAHA.122.318177&volume=42&pages=1283-1306&publication_year=2022&author=Puylaert%2CP) 
  1. Robichaud, S. et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy 17, 3671–3689 (2021).
[Article](https://doi.org/10.1080%2F15548627.2021.1886839)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33590792)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632324)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXltleiurg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identification%20of%20novel%20lipid%20droplet%20factors%20that%20regulate%20lipophagy%20and%20cholesterol%20efflux%20in%20macrophage%20foam%20cells&journal=Autophagy&doi=10.1080%2F15548627.2021.1886839&volume=17&pages=3671-3689&publication_year=2021&author=Robichaud%2CS) 
  1. Ouimet, M. & Marcel, Y. L. Regulation of lipid droplet cholesterol efflux from macrophage foam cells. Arterioscler. Thromb. Vasc. Biol. 32, 575–581 (2012).
[Article](https://doi.org/10.1161%2FATVBAHA.111.240705)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22207731)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XisVyntL4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20lipid%20droplet%20cholesterol%20efflux%20from%20macrophage%20foam%20cells&journal=Arterioscler.%20Thromb.%20Vasc.%20Biol.&doi=10.1161%2FATVBAHA.111.240705&volume=32&pages=575-581&publication_year=2012&author=Ouimet%2CM&author=Marcel%2CYL) 
  1. Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011).
[Article](https://doi.org/10.1016%2Fj.cell.2011.04.005)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21529710)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3111065)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXlsFSiu7c%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Macrophages%20in%20the%20pathogenesis%20of%20atherosclerosis&journal=Cell&doi=10.1016%2Fj.cell.2011.04.005&volume=145&pages=341-355&publication_year=2011&author=Moore%2CKJ&author=Tabas%2CI) 
  1. Singh, R. K. et al. TLR4 (Toll-Like Receptor 4)-dependent signaling drives extracellular catabolism of LDL (low-density lipoprotein) aggregates. Arterioscler. Thromb. Vasc. Biol. 40, 86–102 (2020).
[Article](https://doi.org/10.1161%2FATVBAHA.119.313200)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31597445)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXisVylu7fF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=TLR4%20%28Toll-Like%20Receptor%204%29-dependent%20signaling%20drives%20extracellular%20catabolism%20of%20LDL%20%28low-density%20lipoprotein%29%20aggregates&journal=Arterioscler.%20Thromb.%20Vasc.%20Biol.&doi=10.1161%2FATVBAHA.119.313200&volume=40&pages=86-102&publication_year=2020&author=Singh%2CRK) 
  1. Yan, J. & Horng, T. Lipid metabolism in regulation of macrophage functions. Trends Cell Biol. 30, 979–989 (2020).
[Article](https://doi.org/10.1016%2Fj.tcb.2020.09.006)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33036870)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhvFaqur3J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lipid%20metabolism%20in%20regulation%20of%20macrophage%20functions&journal=Trends%20Cell%20Biol.&doi=10.1016%2Fj.tcb.2020.09.006&volume=30&pages=979-989&publication_year=2020&author=Yan%2CJ&author=Horng%2CT) 
  1. Remmerie, A. & Scott, C. L. Macrophages and lipid metabolism. Cell Immunol. 330, 27–42 (2018).
[Article](https://doi.org/10.1016%2Fj.cellimm.2018.01.020)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29429624)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108423)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXisFKgurs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Macrophages%20and%20lipid%20metabolism&journal=Cell%20Immunol.&doi=10.1016%2Fj.cellimm.2018.01.020&volume=330&pages=27-42&publication_year=2018&author=Remmerie%2CA&author=Scott%2CCL) 
  1. Haschka, D., Hoffmann, A. & Weiss, G. Iron in immune cell function and host defense. Semin. Cell Dev. Biol. 115, 27–36 (2021).
[Article](https://doi.org/10.1016%2Fj.semcdb.2020.12.005)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33386235)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXitlSjsL0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20in%20immune%20cell%20function%20and%20host%20defense&journal=Semin.%20Cell%20Dev.%20Biol.&doi=10.1016%2Fj.semcdb.2020.12.005&volume=115&pages=27-36&publication_year=2021&author=Haschka%2CD&author=Hoffmann%2CA&author=Weiss%2CG) 
  1. Cai, J. et al. Iron accumulation in macrophages promotes the formation of foam cells and development of atherosclerosis. Cell Biosci. 10, 137 (2020).
[Article](https://link.springer.com/doi/10.1186/s13578-020-00500-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33292517)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7691057)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXis1WhsrvI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20accumulation%20in%20macrophages%20promotes%20the%20formation%20of%20foam%20cells%20and%20development%20of%20atherosclerosis&journal=Cell%20Biosci.&doi=10.1186%2Fs13578-020-00500-5&volume=10&publication_year=2020&author=Cai%2CJ) 
  1. Malhotra, R. et al. Hepcidin deficiency protects against atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 39, 178–187 (2019).
[Article](https://doi.org/10.1161%2FATVBAHA.118.312215)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30587002)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6344241)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhs1antLc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepcidin%20deficiency%20protects%20against%20atherosclerosis&journal=Arterioscler.%20Thromb.%20Vasc.%20Biol.&doi=10.1161%2FATVBAHA.118.312215&volume=39&pages=178-187&publication_year=2019&author=Malhotra%2CR) 
  1. Ji, J. et al. Low expression of ferroxidases is implicated in the iron retention in human atherosclerotic plaques. Biochem. Biophys. Res. Commun. 464, 1134–1138 (2015).
[Article](https://doi.org/10.1016%2Fj.bbrc.2015.07.091)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26208458)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXht1KgurzI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Low%20expression%20of%20ferroxidases%20is%20implicated%20in%20the%20iron%20retention%20in%20human%20atherosclerotic%20plaques&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2015.07.091&volume=464&pages=1134-1138&publication_year=2015&author=Ji%2CJ) 
  1. Chiu, M. H. et al. Coronary artery disease in post-menopausal women: are there appropriate means of assessment? Clin. Sci. 132, 1937–1952 (2018).
[Article](https://doi.org/10.1042%2FCS20180067)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXjtFymt7g%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Coronary%20artery%20disease%20in%20post-menopausal%20women%3A%20are%20there%20appropriate%20means%20of%20assessment%3F&journal=Clin.%20Sci.&doi=10.1042%2FCS20180067&volume=132&pages=1937-1952&publication_year=2018&author=Chiu%2CMH) 
  1. Bai, T. et al. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med. 160, 92–102 (2020).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2020.07.026)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32768568)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhs1CrsrvN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20ferroptosis%20alleviates%20atherosclerosis%20through%20attenuating%20lipid%20peroxidation%20and%20endothelial%20dysfunction%20in%20mouse%20aortic%20endothelial%20cell&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2020.07.026&volume=160&pages=92-102&publication_year=2020&author=Bai%2CT) 
  1. Ito, F., Sono, Y. & Ito, T. Measurement and clinical significance of lipid peroxidation as a biomarker of oxidative stress: oxidative stress in diabetes, atherosclerosis, and chronic inflammation. Antioxidants 8, 72 (2019).
  1. Zhou, Y. et al. Verification of ferroptosis and pyroptosis and identification of PTGS2 as the hub gene in human coronary artery atherosclerosis. Free Radic. Biol. Med. 171, 55–68 (2021).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2021.05.009)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33974977)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtFSns7vK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Verification%20of%20ferroptosis%20and%20pyroptosis%20and%20identification%20of%20PTGS2%20as%20the%20hub%20gene%20in%20human%20coronary%20artery%20atherosclerosis&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2021.05.009&volume=171&pages=55-68&publication_year=2021&author=Zhou%2CY) 
  1. Feng, H. & Stockwell, B. R. Unsolved mysteries: how does lipid peroxidation cause ferroptosis? PLoS Biol. 16, e2006203 (2018).
[Article](https://doi.org/10.1371%2Fjournal.pbio.2006203)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29795546)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5991413)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Unsolved%20mysteries%3A%20how%20does%20lipid%20peroxidation%20cause%20ferroptosis%3F&journal=PLoS%20Biol.&doi=10.1371%2Fjournal.pbio.2006203&volume=16&publication_year=2018&author=Feng%2CH&author=Stockwell%2CBR) 
  1. Kaisar, M. A., Sivandzade, F., Bhalerao, A. & Cucullo, L. Conventional and electronic cigarettes dysregulate the expression of iron transporters and detoxifying enzymes at the brain vascular endothelium: in vivo evidence of a gender-specific cellular response to chronic cigarette smoke exposure. Neurosci. Lett. 682, 1–9 (2018).
[Article](https://doi.org/10.1016%2Fj.neulet.2018.05.045)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29879439)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6102071)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXhtV2ltL7F)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Conventional%20and%20electronic%20cigarettes%20dysregulate%20the%20expression%20of%20iron%20transporters%20and%20detoxifying%20enzymes%20at%20the%20brain%20vascular%20endothelium%3A%20in%20vivo%20evidence%20of%20a%20gender-specific%20cellular%20response%20to%20chronic%20cigarette%20smoke%20exposure&journal=Neurosci.%20Lett.&doi=10.1016%2Fj.neulet.2018.05.045&volume=682&pages=1-9&publication_year=2018&author=Kaisar%2CMA&author=Sivandzade%2CF&author=Bhalerao%2CA&author=Cucullo%2CL) 
  1. Yang, K., Song, H. & Yin, D. PDSS2 Inhibits The Ferroptosis Of Vascular Endothelial Cells In Atherosclerosis By Activating Nrf2. J. Cardiovasc. Pharm. 77, 767–776 (2021).
[Article](https://doi.org/10.1097%2FFJC.0000000000001030)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhs1yjsrbI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=PDSS2%20Inhibits%20The%20Ferroptosis%20Of%20Vascular%20Endothelial%20Cells%20In%20Atherosclerosis%20By%20Activating%20Nrf2&journal=J.%20Cardiovasc.%20Pharm.&doi=10.1097%2FFJC.0000000000001030&volume=77&pages=767-776&publication_year=2021&author=Yang%2CK&author=Song%2CH&author=Yin%2CD) 
  1. Li, C. et al. CTRP5 promotes transcytosis and oxidative modification of low-density lipoprotein and the development of atherosclerosis. Atherosclerosis 278, 197–209 (2018).
[Article](https://doi.org/10.1016%2Fj.atherosclerosis.2018.09.037)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30300788)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXhvVKrsrjO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=CTRP5%20promotes%20transcytosis%20and%20oxidative%20modification%20of%20low-density%20lipoprotein%20and%20the%20development%20of%20atherosclerosis&journal=Atherosclerosis&doi=10.1016%2Fj.atherosclerosis.2018.09.037&volume=278&pages=197-209&publication_year=2018&author=Li%2CC) 
  1. Liu, W. et al. Erythroid lineage Jak2V617F expression promotes atherosclerosis through erythrophagocytosis and macrophage ferroptosis. J. Clin. Investig. 132, e155724 (2022).
  1. Long, H., Zhu, W., Wei, L. & Zhao, J. Iron homeostasis imbalance and ferroptosis in brain diseases. MedComm 4, e298 (2023).
[Article](https://doi.org/10.1002%2Fmco2.298)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37377861)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10292684)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhtlSqsbrI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20homeostasis%20imbalance%20and%20ferroptosis%20in%20brain%20diseases&journal=MedComm&doi=10.1002%2Fmco2.298&volume=4&publication_year=2023&author=Long%2CH&author=Zhu%2CW&author=Wei%2CL&author=Zhao%2CJ) 
  1. Wei, Z. et al. Broadening horizons: ferroptosis as a new target for traumatic brain injury. Burns Trauma 12, tkad051 (2024).
[Article](https://doi.org/10.1093%2Fburnst%2Ftkad051)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38250705)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10799763)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Broadening%20horizons%3A%20ferroptosis%20as%20a%20new%20target%20for%20traumatic%20brain%20injury&journal=Burns%20Trauma&doi=10.1093%2Fburnst%2Ftkad051&volume=12&publication_year=2024&author=Wei%2CZ) 
  1. Scheltens, P. et al. Alzheimer’s disease. Lancet 397, 1577–1590 (2021).
[Article](https://doi.org/10.1016%2FS0140-6736%2820%2932205-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33667416)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8354300)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhsVegsL7F)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alzheimer%E2%80%99s%20disease&journal=Lancet&doi=10.1016%2FS0140-6736%2820%2932205-4&volume=397&pages=1577-1590&publication_year=2021&author=Scheltens%2CP) 
  1. Derry, P. J. et al. Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer’s disease from a ferroptosis perspective. Prog. Neurobiol. 184, 101716 (2020).
[Article](https://doi.org/10.1016%2Fj.pneurobio.2019.101716)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31604111)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXit1Oju7fO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Revisiting%20the%20intersection%20of%20amyloid%2C%20pathologically%20modified%20tau%20and%20iron%20in%20Alzheimer%E2%80%99s%20disease%20from%20a%20ferroptosis%20perspective&journal=Prog.%20Neurobiol.&doi=10.1016%2Fj.pneurobio.2019.101716&volume=184&publication_year=2020&author=Derry%2CPJ) 
  1. Nikseresht, S., Bush, A. I. & Ayton, S. Treating Alzheimer’s disease by targeting iron. Br. J. Pharm. 176, 3622–3635 (2019).
[Article](https://doi.org/10.1111%2Fbph.14567)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXislKqtbw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Treating%20Alzheimer%E2%80%99s%20disease%20by%20targeting%20iron&journal=Br.%20J.%20Pharm.&doi=10.1111%2Fbph.14567&volume=176&pages=3622-3635&publication_year=2019&author=Nikseresht%2CS&author=Bush%2CAI&author=Ayton%2CS) 
  1. Yong, Y. Y. et al. Penthorum chinense Pursh inhibits ferroptosis in cellular and Caenorhabditis elegans models of Alzheimer’s disease. Phytomedicine 127, 155463 (2024).
[Article](https://doi.org/10.1016%2Fj.phymed.2024.155463)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38452694)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXlvFemurs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Penthorum%20chinense%20Pursh%20inhibits%20ferroptosis%20in%20cellular%20and%20Caenorhabditis%20elegans%20models%20of%20Alzheimer%E2%80%99s%20disease&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2024.155463&volume=127&publication_year=2024&author=Yong%2CYY) 
  1. Masaldan, S., Belaidi, A. A., Ayton, S. & Bush, A. I. Cellular senescence and iron dyshomeostasis in Alzheimer’s disease. Pharmaceuticals 12, 93 (2019).
  1. Ayton, S. et al. Regional brain iron associated with deterioration in Alzheimer’s disease: a large cohort study and theoretical significance. Alzheimers Dement. 17, 1244–1256 (2021).
[Article](https://doi.org/10.1002%2Falz.12282)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33491917)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regional%20brain%20iron%20associated%20with%20deterioration%20in%20Alzheimer%E2%80%99s%20disease%3A%20a%20large%20cohort%20study%20and%20theoretical%20significance&journal=Alzheimers%20Dement.&doi=10.1002%2Falz.12282&volume=17&pages=1244-1256&publication_year=2021&author=Ayton%2CS) 
  1. Ashraf, A., Jeandriens, J., Parkes, H. G. & So, P. W. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: evidence of ferroptosis. Redox Biol. 32, 101494 (2020).
[Article](https://doi.org/10.1016%2Fj.redox.2020.101494)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32199332)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7083890)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXlsFertr8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20dyshomeostasis%2C%20lipid%20peroxidation%20and%20perturbed%20expression%20of%20cystine%2Fglutamate%20antiporter%20in%20Alzheimer%E2%80%99s%20disease%3A%20evidence%20of%20ferroptosis&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2020.101494&volume=32&publication_year=2020&author=Ashraf%2CA&author=Jeandriens%2CJ&author=Parkes%2CHG&author=So%2CPW) 
  1. Jakaria, M., Belaidi, A. A., Bush, A. I. & Ayton, S. Ferroptosis as a mechanism of neurodegeneration in Alzheimer’s disease. J. Neurochem. 159, 804–825 (2021).
[Article](https://doi.org/10.1111%2Fjnc.15519)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34553778)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXit1Wqur%2FL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20as%20a%20mechanism%20of%20neurodegeneration%20in%20Alzheimer%E2%80%99s%20disease&journal=J.%20Neurochem.&doi=10.1111%2Fjnc.15519&volume=159&pages=804-825&publication_year=2021&author=Jakaria%2CM&author=Belaidi%2CAA&author=Bush%2CAI&author=Ayton%2CS) 
  1. Plascencia-Villa, G. & Perry, G. Preventive and therapeutic strategies in Alzheimer’s disease: focus on oxidative stress, redox metals, and ferroptosis. Antioxid. Redox Signal. 34, 591–610 (2021).
[Article](https://doi.org/10.1089%2Fars.2020.8134)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32486897)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8098758)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXktlClur8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Preventive%20and%20therapeutic%20strategies%20in%20Alzheimer%E2%80%99s%20disease%3A%20focus%20on%20oxidative%20stress%2C%20redox%20metals%2C%20and%20ferroptosis&journal=Antioxid.%20Redox%20Signal.&doi=10.1089%2Fars.2020.8134&volume=34&pages=591-610&publication_year=2021&author=Plascencia-Villa%2CG&author=Perry%2CG) 
  1. Feng, L. et al. Ferroptosis mechanism and Alzheimer’s disease. Neural Regen. Res. 19, 1741–1750 (2024).
[Article](https://doi.org/10.4103%2F1673-5374.389362)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38103240)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXitV2jsrjP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20mechanism%20and%20Alzheimer%E2%80%99s%20disease&journal=Neural%20Regen.%20Res.&doi=10.4103%2F1673-5374.389362&volume=19&pages=1741-1750&publication_year=2024&author=Feng%2CL) 
  1. Gleason, A. & Bush, A. I. Iron and ferroptosis as therapeutic targets in Alzheimer’s disease. Neurotherapeutics 18, 252–264 (2021).
[Article](https://link.springer.com/doi/10.1007/s13311-020-00954-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33111259)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20ferroptosis%20as%20therapeutic%20targets%20in%20Alzheimer%E2%80%99s%20disease&journal=Neurotherapeutics&doi=10.1007%2Fs13311-020-00954-y&volume=18&pages=252-264&publication_year=2021&author=Gleason%2CA&author=Bush%2CAI) 
  1. Pal, A. et al. Iron in Alzheimer’s disease: from physiology to disease disabilities. Biomolecules 12, 1248 (2022).
  1. Dang, Y. et al. FTH1- and SAT1-induced astrocytic ferroptosis is involved in Alzheimer’s disease: evidence from single-cell transcriptomic analysis. Pharmaceuticals 15, 1177 (2022).
  1. Belaidi, A. A. et al. Apolipoprotein E potently inhibits ferroptosis by blocking ferritinophagy. Mol. Psychiatry 29, 211–220 (2024).
[Article](https://doi.org/10.1038%2Fs41380-022-01568-w)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35484240)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xhs1GhsLzJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Apolipoprotein%20E%20potently%20inhibits%20ferroptosis%20by%20blocking%20ferritinophagy&journal=Mol.%20Psychiatry&doi=10.1038%2Fs41380-022-01568-w&volume=29&pages=211-220&publication_year=2024&author=Belaidi%2CAA) 
  1. Huang, L. et al. Intracellular amyloid toxicity induces oxytosis/ferroptosis regulated cell death. Cell Death Dis. 11, 828 (2020).
[Article](https://doi.org/10.1038%2Fs41419-020-03020-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33024077)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7538552)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitVagsLbM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Intracellular%20amyloid%20toxicity%20induces%20oxytosis%2Fferroptosis%20regulated%20cell%20death&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-020-03020-9&volume=11&publication_year=2020&author=Huang%2CL) 
  1. Naderi, S. et al. Role of amyloid beta (25-35) neurotoxicity in the ferroptosis and necroptosis as modalities of regulated cell death in Alzheimer’s disease. Neurotoxicology 94, 71–86 (2023).
[Article](https://doi.org/10.1016%2Fj.neuro.2022.11.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36347329)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XivFOnsbvE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20amyloid%20beta%20%2825-35%29%20neurotoxicity%20in%20the%20ferroptosis%20and%20necroptosis%20as%20modalities%20of%20regulated%20cell%20death%20in%20Alzheimer%E2%80%99s%20disease&journal=Neurotoxicology&doi=10.1016%2Fj.neuro.2022.11.003&volume=94&pages=71-86&publication_year=2023&author=Naderi%2CS) 
  1. Dar, N. J. et al. Oxytosis/ferroptosis in neurodegeneration: the underlying role of master regulator glutathione peroxidase 4 (GPX4). Mol. Neurobiol. 61, 1507–1526 (2024).
[Article](https://link.springer.com/doi/10.1007/s12035-023-03646-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37725216)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFGqtrzE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oxytosis%2Fferroptosis%20in%20neurodegeneration%3A%20the%20underlying%20role%20of%20master%20regulator%20glutathione%20peroxidase%204%20%28GPX4%29&journal=Mol.%20Neurobiol.&doi=10.1007%2Fs12035-023-03646-8&volume=61&pages=1507-1526&publication_year=2024&author=Dar%2CNJ) 
  1. Hambright, W. S. et al. Ablation of ferroptosis regulator glutathione peroxidase 4 in forebrain neurons promotes cognitive impairment and neurodegeneration. Redox Biol. 12, 8–17 (2017).
[Article](https://doi.org/10.1016%2Fj.redox.2017.01.021)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28212525)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5312549)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXislyisrg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ablation%20of%20ferroptosis%20regulator%20glutathione%20peroxidase%204%20in%20forebrain%20neurons%20promotes%20cognitive%20impairment%20and%20neurodegeneration&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2017.01.021&volume=12&pages=8-17&publication_year=2017&author=Hambright%2CWS) 
  1. Greenough, M. A. et al. Selective ferroptosis vulnerability due to familial Alzheimer’s disease presenilin mutations. Cell Death Differ. 29, 2123–2136 (2022).
[Article](https://doi.org/10.1038%2Fs41418-022-01003-1)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35449212)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9613996)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhsFagtrjF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Selective%20ferroptosis%20vulnerability%20due%20to%20familial%20Alzheimer%E2%80%99s%20disease%20presenilin%20mutations&journal=Cell%20Death%20Differ.&doi=10.1038%2Fs41418-022-01003-1&volume=29&pages=2123-2136&publication_year=2022&author=Greenough%2CMA) 
  1. Park, M. W. et al. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol. 41, 101947 (2021).
[Article](https://doi.org/10.1016%2Fj.redox.2021.101947)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33774476)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8027773)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXns1ehtLc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=NOX4%20promotes%20ferroptosis%20of%20astrocytes%20by%20oxidative%20stress-induced%20lipid%20peroxidation%20via%20the%20impairment%20of%20mitochondrial%20metabolism%20in%20Alzheimer%E2%80%99s%20diseases&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2021.101947&volume=41&publication_year=2021&author=Park%2CMW) 
  1. Lane, D. J. R., Alves, F., Ayton, S. J. & Bush, A. I. Striking a NRF2: the rusty and rancid vulnerabilities toward ferroptosis in Alzheimer’s disease. Antioxid. Redox Signal. 39, 141–161 (2023).
[Article](https://doi.org/10.1089%2Fars.2023.0318)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37212212)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsFansrfI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Striking%20a%20NRF2%3A%20the%20rusty%20and%20rancid%20vulnerabilities%20toward%20ferroptosis%20in%20Alzheimer%E2%80%99s%20disease&journal=Antioxid.%20Redox%20Signal.&doi=10.1089%2Fars.2023.0318&volume=39&pages=141-161&publication_year=2023&author=Lane%2CDJR&author=Alves%2CF&author=Ayton%2CSJ&author=Bush%2CAI) 
  1. Qu, Z. et al. Transcription factor NRF2 as a promising therapeutic target for Alzheimer’s disease. Free Radic. Biol. Med. 159, 87–102 (2020).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2020.06.028)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32730855)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhs1Srtr3J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Transcription%20factor%20NRF2%20as%20a%20promising%20therapeutic%20target%20for%20Alzheimer%E2%80%99s%20disease&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2020.06.028&volume=159&pages=87-102&publication_year=2020&author=Qu%2CZ) 
  1. Tang, Z. et al. NRF2 Deficiency promotes ferroptosis of astrocytes mediated by oxidative stress in Alzheimer’s disease. Mol. Neurobiol. https://doi.org/10.1007/s12035-024-04023-9 (2024).
  1. Li, J. et al. beta-amyloid protein induces mitophagy-dependent ferroptosis through the CD36/PINK/PARKIN pathway leading to blood-brain barrier destruction in Alzheimer’s disease. Cell Biosci. 12, 69 (2022).
[Article](https://link.springer.com/doi/10.1186/s13578-022-00807-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35619150)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9134700)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XitVemtLjP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=beta-amyloid%20protein%20induces%20mitophagy-dependent%20ferroptosis%20through%20the%20CD36%2FPINK%2FPARKIN%20pathway%20leading%20to%20blood-brain%20barrier%20destruction%20in%20Alzheimer%E2%80%99s%20disease&journal=Cell%20Biosci.&doi=10.1186%2Fs13578-022-00807-5&volume=12&publication_year=2022&author=Li%2CJ) 
  1. Wang, M. et al. Revisiting the intersection of microglial activation and neuroinflammation in Alzheimer’s disease from the perspective of ferroptosis. Chem. Biol. Interact. 375, 110387 (2023).
[Article](https://doi.org/10.1016%2Fj.cbi.2023.110387)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36758888)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXks1Ckt7g%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Revisiting%20the%20intersection%20of%20microglial%20activation%20and%20neuroinflammation%20in%20Alzheimer%E2%80%99s%20disease%20from%20the%20perspective%20of%20ferroptosis&journal=Chem.%20Biol.%20Interact.&doi=10.1016%2Fj.cbi.2023.110387&volume=375&publication_year=2023&author=Wang%2CM) 
  1. Wang, Y. et al. Pharmacological Inhibition of Ferroptosis as a Therapeutic Target for Neurodegenerative Diseases and Strokes. Adv. Sci. 10, e2300325 (2023).
[Article](https://doi.org/10.1002%2Fadvs.202300325)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pharmacological%20Inhibition%20of%20Ferroptosis%20as%20a%20Therapeutic%20Target%20for%20Neurodegenerative%20Diseases%20and%20Strokes&journal=Adv.%20Sci.&doi=10.1002%2Fadvs.202300325&volume=10&publication_year=2023&author=Wang%2CY) 
  1. Li, X., Wang, X., Huang, B. & Huang, R. Sennoside A restrains TRAF6 level to modulate ferroptosis, inflammation and cognitive impairment in aging mice with Alzheimer’s disease. Int. Immunopharmacol. 120, 110290 (2023).
[Article](https://doi.org/10.1016%2Fj.intimp.2023.110290)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37216800)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhtVKhsbjO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Sennoside%20A%20restrains%20TRAF6%20level%20to%20modulate%20ferroptosis%2C%20inflammation%20and%20cognitive%20impairment%20in%20aging%20mice%20with%20Alzheimer%E2%80%99s%20disease&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2023.110290&volume=120&publication_year=2023&author=Li%2CX&author=Wang%2CX&author=Huang%2CB&author=Huang%2CR) 
  1. Baruah, P. et al. A natural polyphenol activates and enhances GPX4 to mitigate amyloid-beta induced ferroptosis in Alzheimer’s disease. Chem. Sci. 14, 9427–9438 (2023).
[Article](https://doi.org/10.1039%2FD3SC02350H)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37712018)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10498722)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslyis7zO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20natural%20polyphenol%20activates%20and%20enhances%20GPX4%20to%20mitigate%20amyloid-beta%20induced%20ferroptosis%20in%20Alzheimer%E2%80%99s%20disease&journal=Chem.%20Sci.&doi=10.1039%2FD3SC02350H&volume=14&pages=9427-9438&publication_year=2023&author=Baruah%2CP) 
  1. Zhai, L. et al. Paeoniflorin suppresses neuronal ferroptosis to improve the cognitive behaviors in Alzheimer’s disease mice. Phytother. Res. 37, 4791–4800 (2023).
[Article](https://doi.org/10.1002%2Fptr.7946)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37448137)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsFKqs7vM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Paeoniflorin%20suppresses%20neuronal%20ferroptosis%20to%20improve%20the%20cognitive%20behaviors%20in%20Alzheimer%E2%80%99s%20disease%20mice&journal=Phytother.%20Res.&doi=10.1002%2Fptr.7946&volume=37&pages=4791-4800&publication_year=2023&author=Zhai%2CL) 
  1. Li, L. et al. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Mol. Med. 28, 11 (2022).
[Article](https://link.springer.com/doi/10.1186/s10020-022-00442-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35093024)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8800262)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XisFOju7o%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Eriodictyol%20ameliorates%20cognitive%20dysfunction%20in%20APP%2FPS1%20mice%20by%20inhibiting%20ferroptosis%20via%20vitamin%20D%20receptor-mediated%20Nrf2%20activation&journal=Mol.%20Med.&doi=10.1186%2Fs10020-022-00442-3&volume=28&publication_year=2022&author=Li%2CL) 
  1. Wang, C. et al. Forsythoside A mitigates Alzheimer’s-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation. Int. J. Biol. Sci. 18, 2075–2090 (2022).
[Article](https://doi.org/10.7150%2Fijbs.69714)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35342364)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8935224)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xpt1yhurY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Forsythoside%20A%20mitigates%20Alzheimer%E2%80%99s-like%20pathology%20by%20inhibiting%20ferroptosis-mediated%20neuroinflammation%20via%20Nrf2%2FGPX4%20axis%20activation&journal=Int.%20J.%20Biol.%20Sci.&doi=10.7150%2Fijbs.69714&volume=18&pages=2075-2090&publication_year=2022&author=Wang%2CC) 
  1. Cong, L. et al. On the role of synthesized hydroxylated chalcones as dual functional amyloid-beta aggregation and ferroptosis inhibitors for potential treatment of Alzheimer’s disease. Eur. J. Med. Chem. 166, 11–21 (2019).
[Article](https://doi.org/10.1016%2Fj.ejmech.2019.01.039)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30684867)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhvFKntb8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=On%20the%20role%20of%20synthesized%20hydroxylated%20chalcones%20as%20dual%20functional%20amyloid-beta%20aggregation%20and%20ferroptosis%20inhibitors%20for%20potential%20treatment%20of%20Alzheimer%E2%80%99s%20disease&journal=Eur.%20J.%20Med.%20Chem.&doi=10.1016%2Fj.ejmech.2019.01.039&volume=166&pages=11-21&publication_year=2019&author=Cong%2CL) 
  1. Gong, Y. et al. Curculigoside, a traditional Chinese medicine monomer, ameliorates oxidative stress in Alzheimer’s disease mouse model via suppressing ferroptosis. Phytother. Res. 38, 2462–2481 (2024).
[Article](https://doi.org/10.1002%2Fptr.8152)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38444049)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXlvVWmtbo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Curculigoside%2C%20a%20traditional%20Chinese%20medicine%20monomer%2C%20ameliorates%20oxidative%20stress%20in%20Alzheimer%E2%80%99s%20disease%20mouse%20model%20via%20suppressing%20ferroptosis&journal=Phytother.%20Res.&doi=10.1002%2Fptr.8152&volume=38&pages=2462-2481&publication_year=2024&author=Gong%2CY) 
  1. Yang, S. et al. Salidroside attenuates neuronal ferroptosis by activating the Nrf2/HO1 signaling pathway in Abeta(1-42)-induced Alzheimer’s disease mice and glutamate-injured HT22 cells. Chin. Med. 17, 82 (2022).
[Article](https://link.springer.com/doi/10.1186/s13020-022-00634-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35787281)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9254541)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Salidroside%20attenuates%20neuronal%20ferroptosis%20by%20activating%20the%20Nrf2%2FHO1%20signaling%20pathway%20in%20Abeta%281-42%29-induced%20Alzheimer%E2%80%99s%20disease%20mice%20and%20glutamate-injured%20HT22%20cells&journal=Chin.%20Med.&doi=10.1186%2Fs13020-022-00634-3&volume=17&publication_year=2022&author=Yang%2CS) 
  1. Yang, S. et al. Salidroside alleviates cognitive impairment by inhibiting ferroptosis via activation of the Nrf2/GPX4 axis in SAMP8 mice. Phytomedicine 114, 154762 (2023).
[Article](https://doi.org/10.1016%2Fj.phymed.2023.154762)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36965372)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXmt1yqs7Y%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Salidroside%20alleviates%20cognitive%20impairment%20by%20inhibiting%20ferroptosis%20via%20activation%20of%20the%20Nrf2%2FGPX4%20axis%20in%20SAMP8%20mice&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2023.154762&volume=114&publication_year=2023&author=Yang%2CS) 
  1. Gao, Y. et al. Tetrahydroxy stilbene glycoside ameliorates Alzheimer’s disease in APP/PS1 mice via glutathione peroxidase related ferroptosis. Int. Immunopharmacol. 99, 108002 (2021).
[Article](https://doi.org/10.1016%2Fj.intimp.2021.108002)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34333354)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhs1yisbnL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Tetrahydroxy%20stilbene%20glycoside%20ameliorates%20Alzheimer%E2%80%99s%20disease%20in%20APP%2FPS1%20mice%20via%20glutathione%20peroxidase%20related%20ferroptosis&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2021.108002&volume=99&publication_year=2021&author=Gao%2CY) 
  1. Youssef, M. A. M., Mohamed, T. M., Bakry, A. A. & El-Keiy, M. M. Synergistic effect of spermidine and ciprofloxacin against Alzheimer’s disease in male rat via ferroptosis modulation. Int. J. Biol. Macromol. 263, 130387 (2024).
[Article](https://doi.org/10.1016%2Fj.ijbiomac.2024.130387)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38401586)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXksVOns7o%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Synergistic%20effect%20of%20spermidine%20and%20ciprofloxacin%20against%20Alzheimer%E2%80%99s%20disease%20in%20male%20rat%20via%20ferroptosis%20modulation&journal=Int.%20J.%20Biol.%20Macromol.&doi=10.1016%2Fj.ijbiomac.2024.130387&volume=263&publication_year=2024&author=Youssef%2CMAM&author=Mohamed%2CTM&author=Bakry%2CAA&author=El-Keiy%2CMM) 
  1. Moorthy, H. et al. Polycatechols inhibit ferroptosis and modulate tau liquid-liquid phase separation to mitigate Alzheimer’s disease. Mater. Horiz. 11, 3082-3089 (2024).
  1. Sun, Y. et al. Inhibition of ferroptosis through regulating neuronal calcium homeostasis: an emerging therapeutic target for Alzheimer’s disease. Ageing Res. Rev. 87, 101899 (2023).
[Article](https://doi.org/10.1016%2Fj.arr.2023.101899)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36871781)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXlsFyhs7s%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20ferroptosis%20through%20regulating%20neuronal%20calcium%20homeostasis%3A%20an%20emerging%20therapeutic%20target%20for%20Alzheimer%E2%80%99s%20disease&journal=Ageing%20Res.%20Rev.&doi=10.1016%2Fj.arr.2023.101899&volume=87&publication_year=2023&author=Sun%2CY) 
  1. Zhang, Y. H. et al. alpha-Lipoic acid improves abnormal behavior by mitigation of oxidative stress, inflammation, ferroptosis, and tauopathy in P301S Tau transgenic mice. Redox Biol. 14, 535–548 (2018).
[Article](https://doi.org/10.1016%2Fj.redox.2017.11.001)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29126071)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhslygt7nN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=alpha-Lipoic%20acid%20improves%20abnormal%20behavior%20by%20mitigation%20of%20oxidative%20stress%2C%20inflammation%2C%20ferroptosis%2C%20and%20tauopathy%20in%20P301S%20Tau%20transgenic%20mice&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2017.11.001&volume=14&pages=535-548&publication_year=2018&author=Zhang%2CYH) 
  1. Li, C. et al. Tenuifolin in the prevention of Alzheimer’s disease-like phenotypes: investigation of the mechanisms from the perspectives of calpain system, ferroptosis, and apoptosis. Phytother. Res. https://doi.org/10.1002/ptr.7930 (2023).
  1. Tolosa, E., Garrido, A., Scholz, S. W. & Poewe, W. Challenges in the diagnosis of Parkinson’s disease. Lancet Neurol. 20, 385–397 (2021).
[Article](https://doi.org/10.1016%2FS1474-4422%2821%2900030-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33894193)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8185633)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVOlsLzO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Challenges%20in%20the%20diagnosis%20of%20Parkinson%E2%80%99s%20disease&journal=Lancet%20Neurol.&doi=10.1016%2FS1474-4422%2821%2900030-2&volume=20&pages=385-397&publication_year=2021&author=Tolosa%2CE&author=Garrido%2CA&author=Scholz%2CSW&author=Poewe%2CW) 
  1. Liu, L., Cui, Y., Chang, Y. Z. & Yu, P. Ferroptosis-related factors in the substantia nigra are associated with Parkinson’s disease. Sci. Rep. 13, 15365 (2023).
[Article](https://doi.org/10.1038%2Fs41598-023-42574-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37717088)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10505210)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFGrt7vI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis-related%20factors%20in%20the%20substantia%20nigra%20are%20associated%20with%20Parkinson%E2%80%99s%20disease&journal=Sci.%20Rep.&doi=10.1038%2Fs41598-023-42574-4&volume=13&publication_year=2023&author=Liu%2CL&author=Cui%2CY&author=Chang%2CYZ&author=Yu%2CP) 
  1. Mahoney-Sanchez, L. et al. Ferroptosis and its potential role in the physiopathology of Parkinson’s Disease. Prog. Neurobiol. 196, 101890 (2021).
[Article](https://doi.org/10.1016%2Fj.pneurobio.2020.101890)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32726602)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsFWgtbzK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20and%20its%20potential%20role%20in%20the%20physiopathology%20of%20Parkinson%E2%80%99s%20Disease&journal=Prog.%20Neurobiol.&doi=10.1016%2Fj.pneurobio.2020.101890&volume=196&publication_year=2021&author=Mahoney-Sanchez%2CL) 
  1. Martin-Bastida, A. et al. Motor associations of iron accumulation in deep grey matter nuclei in Parkinson’s disease: a cross-sectional study of iron-related magnetic resonance imaging susceptibility. Eur. J. Neurol. 24, 357–365 (2017).
[Article](https://doi.org/10.1111%2Fene.13208)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27982501)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BC1c%2Flt1GksA%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Motor%20associations%20of%20iron%20accumulation%20in%20deep%20grey%20matter%20nuclei%20in%20Parkinson%E2%80%99s%20disease%3A%20a%20cross-sectional%20study%20of%20iron-related%20magnetic%20resonance%20imaging%20susceptibility&journal=Eur.%20J.%20Neurol.&doi=10.1111%2Fene.13208&volume=24&pages=357-365&publication_year=2017&author=Martin-Bastida%2CA) 
  1. Rhodes, S. L. et al. Pooled analysis of iron-related genes in Parkinson’s disease: association with transferrin. Neurobiol. Dis. 62, 172–178 (2014).
[Article](https://doi.org/10.1016%2Fj.nbd.2013.09.019)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24121126)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXjt1OntQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pooled%20analysis%20of%20iron-related%20genes%20in%20Parkinson%E2%80%99s%20disease%3A%20association%20with%20transferrin&journal=Neurobiol.%20Dis.&doi=10.1016%2Fj.nbd.2013.09.019&volume=62&pages=172-178&publication_year=2014&author=Rhodes%2CSL) 
  1. Mastroberardino, P. G. et al. A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson’s disease. Neurobiol. Dis. 34, 417–431 (2009).
[Article](https://doi.org/10.1016%2Fj.nbd.2009.02.009)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19250966)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2784936)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXmtVeks7w%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20novel%20transferrin%2FTfR2-mediated%20mitochondrial%20iron%20transport%20system%20is%20disrupted%20in%20Parkinson%E2%80%99s%20disease&journal=Neurobiol.%20Dis.&doi=10.1016%2Fj.nbd.2009.02.009&volume=34&pages=417-431&publication_year=2009&author=Mastroberardino%2CPG) 
  1. Milanese, C. et al. Gender biased neuroprotective effect of Transferrin Receptor 2 deletion in multiple models of Parkinson’s disease. Cell Death Differ. 28, 1720–1732 (2021).
[Article](https://doi.org/10.1038%2Fs41418-020-00698-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33323945)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhsVartrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Gender%20biased%20neuroprotective%20effect%20of%20Transferrin%20Receptor%202%20deletion%20in%20multiple%20models%20of%20Parkinson%E2%80%99s%20disease&journal=Cell%20Death%20Differ.&doi=10.1038%2Fs41418-020-00698-4&volume=28&pages=1720-1732&publication_year=2021&author=Milanese%2CC) 
  1. Agostini, F., Bubacco, L., Chakrabarti, S. & Bisaglia, M. Alpha-synuclein toxicity in drosophila melanogaster is enhanced by the presence of iron: implications for Parkinson’s Disease. Antioxidants 12, 261 (2023).
  1. Deas, E. et al. Alpha-synuclein oligomers interact with metal ions to induce oxidative stress and neuronal death in Parkinson’s Disease. Antioxid. Redox Signal. 24, 376–391 (2016).
[Article](https://doi.org/10.1089%2Fars.2015.6343)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26564470)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4999647)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XivFOnsrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alpha-synuclein%20oligomers%20interact%20with%20metal%20ions%20to%20induce%20oxidative%20stress%20and%20neuronal%20death%20in%20Parkinson%E2%80%99s%20Disease&journal=Antioxid.%20Redox%20Signal.&doi=10.1089%2Fars.2015.6343&volume=24&pages=376-391&publication_year=2016&author=Deas%2CE) 
  1. Ludtmann, M. H. R. et al. alpha-synuclein oligomers interact with ATP synthase and open the permeability transition pore in Parkinson’s disease. Nat. Commun. 9, 2293 (2018).
[Article](https://doi.org/10.1038%2Fs41467-018-04422-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29895861)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5997668)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=alpha-synuclein%20oligomers%20interact%20with%20ATP%20synthase%20and%20open%20the%20permeability%20transition%20pore%20in%20Parkinson%E2%80%99s%20disease&journal=Nat.%20Commun.&doi=10.1038%2Fs41467-018-04422-2&volume=9&publication_year=2018&author=Ludtmann%2CMHR) 
  1. Lv, Q. K. et al. Melatonin MT1 receptors regulate the Sirt1/Nrf2/Ho-1/Gpx4 pathway to prevent alpha-synuclein-induced ferroptosis in Parkinson’s disease. J. Pineal Res. 76, e12948 (2024).
[Article](https://doi.org/10.1111%2Fjpi.12948)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38488331)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXmtVOqsbo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Melatonin%20MT1%20receptors%20regulate%20the%20Sirt1%2FNrf2%2FHo-1%2FGpx4%20pathway%20to%20prevent%20alpha-synuclein-induced%20ferroptosis%20in%20Parkinson%E2%80%99s%20disease&journal=J.%20Pineal%20Res.&doi=10.1111%2Fjpi.12948&volume=76&publication_year=2024&author=Lv%2CQK) 
  1. Wang, M. et al. Identifying the potential genes in alpha synuclein driving ferroptosis of Parkinson’s disease. Sci. Rep. 13, 16893 (2023).
[Article](https://doi.org/10.1038%2Fs41598-023-44124-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37803093)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10558439)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitFamt7bE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identifying%20the%20potential%20genes%20in%20alpha%20synuclein%20driving%20ferroptosis%20of%20Parkinson%E2%80%99s%20disease&journal=Sci.%20Rep.&doi=10.1038%2Fs41598-023-44124-4&volume=13&publication_year=2023&author=Wang%2CM) 
  1. Wang, D. et al. Antiferroptotic activity of non-oxidative dopamine. Biochem. Biophys. Res. Commun. 480, 602–607 (2016).
[Article](https://doi.org/10.1016%2Fj.bbrc.2016.10.099)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27793671)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhslKmsrnP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Antiferroptotic%20activity%20of%20non-oxidative%20dopamine&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2016.10.099&volume=480&pages=602-607&publication_year=2016&author=Wang%2CD) 
  1. Maniscalchi, A. et al. New insights on neurodegeneration triggered by iron accumulation: intersections with neutral lipid metabolism, ferroptosis, and motor impairment. Redox Biol. 71, 103074 (2024).
[Article](https://doi.org/10.1016%2Fj.redox.2024.103074)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38367511)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10879836)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXjs12mtbY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=New%20insights%20on%20neurodegeneration%20triggered%20by%20iron%20accumulation%3A%20intersections%20with%20neutral%20lipid%20metabolism%2C%20ferroptosis%2C%20and%20motor%20impairment&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2024.103074&volume=71&publication_year=2024&author=Maniscalchi%2CA) 
  1. Pang, P., Zhang, S., Fan, X. & Zhang, S. Knockdown of fat mass and obesity alleviates the ferroptosis in Parkinson’s disease through m6A-NRF2-dependent manner. Cell Biol. Int. 48, 431–439 (2024).
[Article](https://doi.org/10.1002%2Fcbin.12118)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38180302)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXnvFensA%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Knockdown%20of%20fat%20mass%20and%20obesity%20alleviates%20the%20ferroptosis%20in%20Parkinson%E2%80%99s%20disease%20through%20m6A-NRF2-dependent%20manner&journal=Cell%20Biol.%20Int.&doi=10.1002%2Fcbin.12118&volume=48&pages=431-439&publication_year=2024&author=Pang%2CP&author=Zhang%2CS&author=Fan%2CX&author=Zhang%2CS) 
  1. Tian, Y. et al. FTH1 inhibits ferroptosis through ferritinophagy in the 6-OHDA model of Parkinson’s disease. Neurotherapeutics 17, 1796–1812 (2020).
[Article](https://link.springer.com/doi/10.1007/s13311-020-00929-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32959272)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7851296)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhvFSlsrrJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=FTH1%20inhibits%20ferroptosis%20through%20ferritinophagy%20in%20the%206-OHDA%20model%20of%20Parkinson%E2%80%99s%20disease&journal=Neurotherapeutics&doi=10.1007%2Fs13311-020-00929-z&volume=17&pages=1796-1812&publication_year=2020&author=Tian%2CY) 
  1. Fu, X., Qu, L., Xu, H. & Xie, J. Ndfip1 protected dopaminergic neurons via regulating mitochondrial function and ferroptosis in Parkinson’s disease. Exp. Neurol. 375, 114724 (2024).
[Article](https://doi.org/10.1016%2Fj.expneurol.2024.114724)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38365133)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXkslemu7w%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ndfip1%20protected%20dopaminergic%20neurons%20via%20regulating%20mitochondrial%20function%20and%20ferroptosis%20in%20Parkinson%E2%80%99s%20disease&journal=Exp.%20Neurol.&doi=10.1016%2Fj.expneurol.2024.114724&volume=375&publication_year=2024&author=Fu%2CX&author=Qu%2CL&author=Xu%2CH&author=Xie%2CJ) 
  1. Vallerga, C. L. et al. Analysis of DNA methylation associates the cystine-glutamate antiporter SLC7A11 with risk of Parkinson’s disease. Nat. Commun. 11, 1238 (2020).
[Article](https://doi.org/10.1038%2Fs41467-020-15065-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32144264)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060318)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXlt1Sgtr8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Analysis%20of%20DNA%20methylation%20associates%20the%20cystine-glutamate%20antiporter%20SLC7A11%20with%20risk%20of%20Parkinson%E2%80%99s%20disease&journal=Nat.%20Commun.&doi=10.1038%2Fs41467-020-15065-7&volume=11&publication_year=2020&author=Vallerga%2CCL) 
  1. Bouchaoui, H. et al. ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons. Free Radic. Biol. Med. 195, 145–157 (2023).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2022.12.086)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36581060)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXntVSr)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ACSL4%20and%20the%20lipoxygenases%2015%2F15B%20are%20pivotal%20for%20ferroptosis%20induced%20by%20iron%20and%20PUFA%20dyshomeostasis%20in%20dopaminergic%20neurons&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2022.12.086&volume=195&pages=145-157&publication_year=2023&author=Bouchaoui%2CH) 
  1. Tang, F. et al. Inhibition of ACSL4 alleviates parkinsonism phenotypes by reduction of lipid reactive oxygen species. Neurotherapeutics 20, 1154–1166 (2023).
[Article](https://link.springer.com/doi/10.1007/s13311-023-01382-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37133631)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10457271)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXpt1aqsL8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20ACSL4%20alleviates%20parkinsonism%20phenotypes%20by%20reduction%20of%20lipid%20reactive%20oxygen%20species&journal=Neurotherapeutics&doi=10.1007%2Fs13311-023-01382-4&volume=20&pages=1154-1166&publication_year=2023&author=Tang%2CF) 
  1. Xia, Y. et al. Inhibition of ferroptosis underlies EGCG mediated protection against Parkinson’s disease in a Drosophila model. Free Radic. Biol. Med. 211, 63–76 (2024).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2023.12.005)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38092273)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXis1egt7%2FI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20ferroptosis%20underlies%20EGCG%20mediated%20protection%20against%20Parkinson%E2%80%99s%20disease%20in%20a%20Drosophila%20model&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2023.12.005&volume=211&pages=63-76&publication_year=2024&author=Xia%2CY) 
  1. Shen, J. et al. Salidroside Mediated the Nrf2/GPX4 pathway to attenuates ferroptosis in Parkinson’s disease. Neurochem. Res. 49, 1291–1305 (2024).
[Article](https://link.springer.com/doi/10.1007/s11064-024-04116-w)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38424396)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10991011)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXkvFaltrs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Salidroside%20Mediated%20the%20Nrf2%2FGPX4%20pathway%20to%20attenuates%20ferroptosis%20in%20Parkinson%E2%80%99s%20disease&journal=Neurochem.%20Res.&doi=10.1007%2Fs11064-024-04116-w&volume=49&pages=1291-1305&publication_year=2024&author=Shen%2CJ) 
  1. Kong, L. et al. Granulathiazole A protects 6-OHDA-induced Parkinson’s disease from ferroptosis via activating Nrf2/HO-1 pathway. Bioorg. Chem. 147, 107399 (2024).
[Article](https://doi.org/10.1016%2Fj.bioorg.2024.107399)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38678778)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXptlWjtLc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Granulathiazole%20A%20protects%206-OHDA-induced%20Parkinson%E2%80%99s%20disease%20from%20ferroptosis%20via%20activating%20Nrf2%2FHO-1%20pathway&journal=Bioorg.%20Chem.&doi=10.1016%2Fj.bioorg.2024.107399&volume=147&publication_year=2024&author=Kong%2CL) 
  1. Li, Q. M. et al. Buddlejasaponin IVb ameliorates ferroptosis of dopaminergic neuron by suppressing IRP2-mediated iron overload in Parkinson’s disease. J. Ethnopharmacol. 319, 117196 (2024).
[Article](https://doi.org/10.1016%2Fj.jep.2023.117196)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37717841)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFKksL%2FO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Buddlejasaponin%20IVb%20ameliorates%20ferroptosis%20of%20dopaminergic%20neuron%20by%20suppressing%20IRP2-mediated%20iron%20overload%20in%20Parkinson%E2%80%99s%20disease&journal=J.%20Ethnopharmacol.&doi=10.1016%2Fj.jep.2023.117196&volume=319&publication_year=2024&author=Li%2CQM) 
  1. Liu, T. et al. Rapamycin reverses ferroptosis by increasing autophagy in MPTP/MPP(+)-induced models of Parkinson’s disease. Neural Regen. Res. 18, 2514–2519 (2023).
[Article](https://doi.org/10.4103%2F1673-5374.371381)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37282484)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360095)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXksFyqtbw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Rapamycin%20reverses%20ferroptosis%20by%20increasing%20autophagy%20in%20MPTP%2FMPP%28%2B%29-induced%20models%20of%20Parkinson%E2%80%99s%20disease&journal=Neural%20Regen.%20Res.&doi=10.4103%2F1673-5374.371381&volume=18&pages=2514-2519&publication_year=2023&author=Liu%2CT) 
  1. Li, K. et al. ALOX5 inhibition protects against dopaminergic neurons undergoing ferroptosis. Pharm. Res. 193, 106779 (2023).
[Article](https://doi.org/10.1016%2Fj.phrs.2023.106779)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht1yqtr3P)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ALOX5%20inhibition%20protects%20against%20dopaminergic%20neurons%20undergoing%20ferroptosis&journal=Pharm.%20Res.&doi=10.1016%2Fj.phrs.2023.106779&volume=193&publication_year=2023&author=Li%2CK) 
  1. Li, M. et al. Neuroprotective effects of morroniside from Cornus officinalis sieb. Et zucc against Parkinson’s disease via inhibiting oxidative stress and ferroptosis. BMC Complement. Med. Ther. 23, 218 (2023).
[Article](https://link.springer.com/doi/10.1186/s12906-023-03967-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37393274)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10314491)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVSlur%2FP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Neuroprotective%20effects%20of%20morroniside%20from%20Cornus%20officinalis%20sieb.%20Et%20zucc%20against%20Parkinson%E2%80%99s%20disease%20via%20inhibiting%20oxidative%20stress%20and%20ferroptosis&journal=BMC%20Complement.%20Med.%20Ther.&doi=10.1186%2Fs12906-023-03967-0&volume=23&publication_year=2023&author=Li%2CM) 
  1. Zhang, X. et al. Targeting NKAalpha1 to treat Parkinson’s disease through inhibition of mitophagy-dependent ferroptosis. Free Radic. Biol. Med. 218, 190–204 (2024).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2024.04.002)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38574977)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXovVentrk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20NKAalpha1%20to%20treat%20Parkinson%E2%80%99s%20disease%20through%20inhibition%20of%20mitophagy-dependent%20ferroptosis&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2024.04.002&volume=218&pages=190-204&publication_year=2024&author=Zhang%2CX) 
  1. Chen, Y. et al. Mapping the research of ferroptosis in Parkinson’s Disease from 2013 to 2023: a scientometric review. Drug Des. Dev. Ther. 18, 1053–1081 (2024).
[Article](https://doi.org/10.2147%2FDDDT.S458026)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mapping%20the%20research%20of%20ferroptosis%20in%20Parkinson%E2%80%99s%20Disease%20from%202013%20to%202023%3A%20a%20scientometric%20review&journal=Drug%20Des.%20Dev.%20Ther.&doi=10.2147%2FDDDT.S458026&volume=18&pages=1053-1081&publication_year=2024&author=Chen%2CY) 
  1. Walker, F. O. Huntington’s disease. Lancet 369, 218–228 (2007).
[Article](https://doi.org/10.1016%2FS0140-6736%2807%2960111-1)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17240289)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXntlCntg%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Huntington%E2%80%99s%20disease&journal=Lancet&doi=10.1016%2FS0140-6736%2807%2960111-1&volume=369&pages=218-228&publication_year=2007&author=Walker%2CFO) 
  1. Tabrizi, S. J. et al. Potential disease-modifying therapies for Huntington’s disease: lessons learned and future opportunities. Lancet Neurol. 21, 645–658 (2022).
[Article](https://doi.org/10.1016%2FS1474-4422%2822%2900121-1)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35716694)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7613206)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XisFWrsr3I)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Potential%20disease-modifying%20therapies%20for%20Huntington%E2%80%99s%20disease%3A%20lessons%20learned%20and%20future%20opportunities&journal=Lancet%20Neurol.&doi=10.1016%2FS1474-4422%2822%2900121-1&volume=21&pages=645-658&publication_year=2022&author=Tabrizi%2CSJ) 
  1. Dominguez, J. F. et al. Iron accumulation in the basal ganglia in Huntington’s disease: cross-sectional data from the IMAGE-HD study. J. Neurol. Neurosurg. Psychiatry 87, 545–549 (2016).
[Article](https://doi.org/10.1136%2Fjnnp-2014-310183)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25952334)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20accumulation%20in%20the%20basal%20ganglia%20in%20Huntington%E2%80%99s%20disease%3A%20cross-sectional%20data%20from%20the%20IMAGE-HD%20study&journal=J.%20Neurol.%20Neurosurg.%20Psychiatry&doi=10.1136%2Fjnnp-2014-310183&volume=87&pages=545-549&publication_year=2016&author=Dominguez%2CJF) 
  1. Muller, M. & Leavitt, B. R. Iron dysregulation in Huntington’s disease. J. Neurochem. 130, 328–350 (2014).
[Article](https://doi.org/10.1111%2Fjnc.12739)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24717009)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtFOlsb7I)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20dysregulation%20in%20Huntington%E2%80%99s%20disease&journal=J.%20Neurochem.&doi=10.1111%2Fjnc.12739&volume=130&pages=328-350&publication_year=2014&author=Muller%2CM&author=Leavitt%2CBR) 
  1. Ribeiro, M. et al. Glutathione redox cycle dysregulation in Huntington’s disease knock-in striatal cells. Free Radic. Biol. Med. 53, 1857–1867 (2012).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2012.09.004)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22982598)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xhs1ags7zN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Glutathione%20redox%20cycle%20dysregulation%20in%20Huntington%E2%80%99s%20disease%20knock-in%20striatal%20cells&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2012.09.004&volume=53&pages=1857-1867&publication_year=2012&author=Ribeiro%2CM) 
  1. Brocardo, P. S., McGinnis, E., Christie, B. R. & Gil-Mohapel, J. Time-course analysis of protein and lipid oxidation in the brains of Yac128 Huntington’s disease transgenic mice. Rejuvenation Res. 19, 140–148 (2016).
[Article](https://doi.org/10.1089%2Frej.2015.1736)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26371883)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XmtFSntr0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Time-course%20analysis%20of%20protein%20and%20lipid%20oxidation%20in%20the%20brains%20of%20Yac128%20Huntington%E2%80%99s%20disease%20transgenic%20mice&journal=Rejuvenation%20Res.&doi=10.1089%2Frej.2015.1736&volume=19&pages=140-148&publication_year=2016&author=Brocardo%2CPS&author=McGinnis%2CE&author=Christie%2CBR&author=Gil-Mohapel%2CJ) 
  1. Hatami, A. et al. Deuterium-reinforced linoleic acid lowers lipid peroxidation and mitigates cognitive impairment in the Q140 knock in mouse model of Huntington’s disease. FEBS J. 285, 3002–3012 (2018).
[Article](https://doi.org/10.1111%2Ffebs.14590)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29933522)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXht1yitLvI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deuterium-reinforced%20linoleic%20acid%20lowers%20lipid%20peroxidation%20and%20mitigates%20cognitive%20impairment%20in%20the%20Q140%20knock%20in%20mouse%20model%20of%20Huntington%E2%80%99s%20disease&journal=FEBS%20J.&doi=10.1111%2Ffebs.14590&volume=285&pages=3002-3012&publication_year=2018&author=Hatami%2CA) 
  1. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).
[Article](https://doi.org/10.1016%2Fj.cell.2017.09.021)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28985560)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685180)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1Wqs7%2FL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20a%20regulated%20cell%20death%20nexus%20linking%20metabolism%2C%20redox%20biology%2C%20and%20disease&journal=Cell&doi=10.1016%2Fj.cell.2017.09.021&volume=171&pages=273-285&publication_year=2017&author=Stockwell%2CBR) 
  1. Mi, Y. et al. The emerging roles of ferroptosis in Huntington’s Disease. Neuromol. Med. 21, 110–119 (2019).
[Article](https://link.springer.com/doi/10.1007/s12017-018-8518-6)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXlslKgurc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20emerging%20roles%20of%20ferroptosis%20in%20Huntington%E2%80%99s%20Disease&journal=Neuromol.%20Med.&doi=10.1007%2Fs12017-018-8518-6&volume=21&pages=110-119&publication_year=2019&author=Mi%2CY) 
  1. Dexter, D. T. et al. Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114, 1953–1975 (1991).
[Article](https://doi.org/10.1093%2Fbrain%2F114.4.1953)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1832073)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alterations%20in%20the%20levels%20of%20iron%2C%20ferritin%20and%20other%20trace%20metals%20in%20Parkinson%E2%80%99s%20disease%20and%20other%20neurodegenerative%20diseases%20affecting%20the%20basal%20ganglia&journal=Brain&doi=10.1093%2Fbrain%2F114.4.1953&volume=114&pages=1953-1975&publication_year=1991&author=Dexter%2CDT) 
  1. van den Bogaard, S. J., Dumas, E. M. & Roos, R. A. The role of iron imaging in Huntington’s disease. Int. Rev. Neurobiol. 110, 241–250 (2013).
[Article](https://doi.org/10.1016%2FB978-0-12-410502-7.00011-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24209441)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20iron%20imaging%20in%20Huntington%E2%80%99s%20disease&journal=Int.%20Rev.%20Neurobiol.&doi=10.1016%2FB978-0-12-410502-7.00011-9&volume=110&pages=241-250&publication_year=2013&author=Bogaard%2CSJ&author=Dumas%2CEM&author=Roos%2CRA) 
  1. Simmons, D. A. et al. Ferritin accumulation in dystrophic microglia is an early event in the development of Huntington’s disease. Glia 55, 1074–1084 (2007).
[Article](https://doi.org/10.1002%2Fglia.20526)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17551926)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferritin%20accumulation%20in%20dystrophic%20microglia%20is%20an%20early%20event%20in%20the%20development%20of%20Huntington%E2%80%99s%20disease&journal=Glia&doi=10.1002%2Fglia.20526&volume=55&pages=1074-1084&publication_year=2007&author=Simmons%2CDA) 
  1. Chen, J. et al. Iron accumulates in Huntington’s disease neurons: protection by deferoxamine. PLoS One 8, e77023 (2013).
[Article](https://doi.org/10.1371%2Fjournal.pone.0077023)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24146952)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3795666)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhs1Cqu7fK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20accumulates%20in%20Huntington%E2%80%99s%20disease%20neurons%3A%20protection%20by%20deferoxamine&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0077023&volume=8&publication_year=2013&author=Chen%2CJ) 
  1. Skouta, R. et al. Ferrostatins inhibit oxidative lipid damage and cell death in diverse disease models. J. Am. Chem. Soc. 136, 4551–4556 (2014).
[Article](https://doi.org/10.1021%2Fja411006a)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24592866)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985476)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXjs1Gqsbs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferrostatins%20inhibit%20oxidative%20lipid%20damage%20and%20cell%20death%20in%20diverse%20disease%20models&journal=J.%20Am.%20Chem.%20Soc.&doi=10.1021%2Fja411006a&volume=136&pages=4551-4556&publication_year=2014&author=Skouta%2CR) 
  1. Song, S. et al. ALOX5-mediated ferroptosis acts as a distinct cell death pathway upon oxidative stress in Huntington’s disease. Genes Dev. 37, 204–217 (2023).
[Article](https://doi.org/10.1101%2Fgad.350211.122)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36921996)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10111862)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXosVOrtL8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ALOX5-mediated%20ferroptosis%20acts%20as%20a%20distinct%20cell%20death%20pathway%20upon%20oxidative%20stress%20in%20Huntington%E2%80%99s%20disease&journal=Genes%20Dev.&doi=10.1101%2Fgad.350211.122&volume=37&pages=204-217&publication_year=2023&author=Song%2CS) 
  1. Monroe, S. M. & Harkness, K. L. Major depression and its recurrences: life course matters. Annu Rev. Clin. Psychol. 18, 329–357 (2022).
[Article](https://doi.org/10.1146%2Fannurev-clinpsy-072220-021440)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35216520)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Major%20depression%20and%20its%20recurrences%3A%20life%20course%20matters&journal=Annu%20Rev.%20Clin.%20Psychol.&doi=10.1146%2Fannurev-clinpsy-072220-021440&volume=18&pages=329-357&publication_year=2022&author=Monroe%2CSM&author=Harkness%2CKL) 
  1. Wang, L. et al. Targeting the ferroptosis crosstalk: novel alternative strategies for the treatment of major depressive disorder. Gen. Psychiatr. 36, e101072 (2023).
[Article](https://doi.org/10.1136%2Fgpsych-2023-101072)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37901286)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10603325)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXnvVCht7o%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20the%20ferroptosis%20crosstalk%3A%20novel%20alternative%20strategies%20for%20the%20treatment%20of%20major%20depressive%20disorder&journal=Gen.%20Psychiatr.&doi=10.1136%2Fgpsych-2023-101072&volume=36&publication_year=2023&author=Wang%2CL) 
  1. Kim, J. & Wessling-Resnick, M. Iron and mechanisms of emotional behavior. J. Nutr. Biochem. 25, 1101–1107 (2014).
[Article](https://doi.org/10.1016%2Fj.jnutbio.2014.07.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25154570)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4253901)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhsVKntrrF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20mechanisms%20of%20emotional%20behavior&journal=J.%20Nutr.%20Biochem.&doi=10.1016%2Fj.jnutbio.2014.07.003&volume=25&pages=1101-1107&publication_year=2014&author=Kim%2CJ&author=Wessling-Resnick%2CM) 
  1. Li, Y. et al. Metal ions in cerebrospinal fluid: associations with anxiety, depression, and insomnia among cigarette smokers. CNS Neurosci. Ther. 28, 2141–2147 (2022).
[Article](https://doi.org/10.1111%2Fcns.13955)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36168907)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9627395)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XisFKkt7zJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metal%20ions%20in%20cerebrospinal%20fluid%3A%20associations%20with%20anxiety%2C%20depression%2C%20and%20insomnia%20among%20cigarette%20smokers&journal=CNS%20Neurosci.%20Ther.&doi=10.1111%2Fcns.13955&volume=28&pages=2141-2147&publication_year=2022&author=Li%2CY) 
  1. Cao, H. et al. Hippocampal proteomic analysis reveals activation of necroptosis and ferroptosis in a mouse model of chronic unpredictable mild stress-induced depression. Behav. Brain Res. 407, 113261 (2021).
[Article](https://doi.org/10.1016%2Fj.bbr.2021.113261)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33775778)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtV2ht7jF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hippocampal%20proteomic%20analysis%20reveals%20activation%20of%20necroptosis%20and%20ferroptosis%20in%20a%20mouse%20model%20of%20chronic%20unpredictable%20mild%20stress-induced%20depression&journal=Behav.%20Brain%20Res.&doi=10.1016%2Fj.bbr.2021.113261&volume=407&publication_year=2021&author=Cao%2CH) 
  1. Jiao, H. et al. Traditional chinese formula xiaoyaosan alleviates depressive-like behavior in CUMS mice by regulating PEBP1-GPX4-mediated ferroptosis in the hippocampus. Neuropsychiatr. Dis. Treat. 17, 1001–1019 (2021).
[Article](https://doi.org/10.2147%2FNDT.S302443)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33854318)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8039849)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Traditional%20chinese%20formula%20xiaoyaosan%20alleviates%20depressive-like%20behavior%20in%20CUMS%20mice%20by%20regulating%20PEBP1-GPX4-mediated%20ferroptosis%20in%20the%20hippocampus&journal=Neuropsychiatr.%20Dis.%20Treat.&doi=10.2147%2FNDT.S302443&volume=17&pages=1001-1019&publication_year=2021&author=Jiao%2CH) 
  1. Sowa-Kucma, M. et al. Lipid peroxidation and immune biomarkers are associated with major depression and its phenotypes, including treatment-resistant depression and melancholia. Neurotox. Res. 33, 448–460 (2018).
[Article](https://link.springer.com/doi/10.1007/s12640-017-9835-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29103192)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhslKntLnI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lipid%20peroxidation%20and%20immune%20biomarkers%20are%20associated%20with%20major%20depression%20and%20its%20phenotypes%2C%20including%20treatment-resistant%20depression%20and%20melancholia&journal=Neurotox.%20Res.&doi=10.1007%2Fs12640-017-9835-5&volume=33&pages=448-460&publication_year=2018&author=Sowa-Kucma%2CM) 
  1. Dang, R. et al. Edaravone ameliorates depressive and anxiety-like behaviors via Sirt1/Nrf2/HO-1/Gpx4 pathway. J. Neuroinflamm. 19, 41 (2022).
[Article](https://link.springer.com/doi/10.1186/s12974-022-02400-6)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XjtlSitLY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Edaravone%20ameliorates%20depressive%20and%20anxiety-like%20behaviors%20via%20Sirt1%2FNrf2%2FHO-1%2FGpx4%20pathway&journal=J.%20Neuroinflamm.&doi=10.1186%2Fs12974-022-02400-6&volume=19&publication_year=2022&author=Dang%2CR) 
  1. Li, E. et al. Inhibition of ferroptosis alleviates chronic unpredictable mild stress-induced depression in mice via tsRNA-3029b. Brain Res. Bull. 204, 110773 (2023).
[Article](https://doi.org/10.1016%2Fj.brainresbull.2023.110773)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37793597)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXit1Sms7rL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20ferroptosis%20alleviates%20chronic%20unpredictable%20mild%20stress-induced%20depression%20in%20mice%20via%20tsRNA-3029b&journal=Brain%20Res.%20Bull.&doi=10.1016%2Fj.brainresbull.2023.110773&volume=204&publication_year=2023&author=Li%2CE) 
  1. Xu, C. et al. Alcohol exposure induces depressive and anxiety-like behaviors via activating ferroptosis in mice. Int. J. Mol. Sci. 23, 13828 (2022).
  1. Mao, L. et al. Arginine methylation of beta-catenin induced by PRMT2 aggravates LPS-Induced Cognitive Dysfunction And Depression-like Behaviors By Promoting Ferroptosis. Mol. Neurobiol. https://doi.org/10.1007/s12035-024-04019-5 (2024).
  1. Yang, Z. et al. Di-Huang-Yin-Zi regulates P53/SLC7A11 signaling pathway to improve the mechanism of post-stroke depression. J. Ethnopharmacol. 319, 117226 (2024).
[Article](https://doi.org/10.1016%2Fj.jep.2023.117226)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37748635)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitVCktbjM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Di-Huang-Yin-Zi%20regulates%20P53%2FSLC7A11%20signaling%20pathway%20to%20improve%20the%20mechanism%20of%20post-stroke%20depression&journal=J.%20Ethnopharmacol.&doi=10.1016%2Fj.jep.2023.117226&volume=319&publication_year=2024&author=Yang%2CZ) 
  1. Wang, X. et al. Saikosaponin B2 ameliorates depression-induced microglia activation by inhibiting ferroptosis-mediated neuroinflammation and ER stress. J. Ethnopharmacol. 316, 116729 (2023).
[Article](https://doi.org/10.1016%2Fj.jep.2023.116729)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37277081)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht12isbfO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Saikosaponin%20B2%20ameliorates%20depression-induced%20microglia%20activation%20by%20inhibiting%20ferroptosis-mediated%20neuroinflammation%20and%20ER%20stress&journal=J.%20Ethnopharmacol.&doi=10.1016%2Fj.jep.2023.116729&volume=316&publication_year=2023&author=Wang%2CX) 
  1. Yang, R. et al. Gallic acid improves comorbid chronic pain and depression behaviors by inhibiting P2X7 receptor-mediated ferroptosis in the spinal cord of rats. ACS Chem. Neurosci. 14, 667–676 (2023).
[Article](https://doi.org/10.1021%2Facschemneuro.2c00532)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36719132)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitFOnsrk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Gallic%20acid%20improves%20comorbid%20chronic%20pain%20and%20depression%20behaviors%20by%20inhibiting%20P2X7%20receptor-mediated%20ferroptosis%20in%20the%20spinal%20cord%20of%20rats&journal=ACS%20Chem.%20Neurosci.&doi=10.1021%2Facschemneuro.2c00532&volume=14&pages=667-676&publication_year=2023&author=Yang%2CR) 
  1. Wang, X. et al. DHA and EPA prevent seizure and depression-like behavior by inhibiting ferroptosis and neuroinflammation via different mode-of-actions in a pentylenetetrazole-induced kindling model in mice. Mol. Nutr. Food Res. 66, e2200275 (2022).
[Article](https://doi.org/10.1002%2Fmnfr.202200275)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36099650)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=DHA%20and%20EPA%20prevent%20seizure%20and%20depression-like%20behavior%20by%20inhibiting%20ferroptosis%20and%20neuroinflammation%20via%20different%20mode-of-actions%20in%20a%20pentylenetetrazole-induced%20kindling%20model%20in%20mice&journal=Mol.%20Nutr.%20Food%20Res.&doi=10.1002%2Fmnfr.202200275&volume=66&publication_year=2022&author=Wang%2CX) 
  1. Shen, J. et al. Acupuncture alleviates CUMS-induced depression-like behaviors of rats by regulating oxidative stress, neuroinflammation and ferroptosis. Brain Res. 1826, 148715 (2024).
[Article](https://doi.org/10.1016%2Fj.brainres.2023.148715)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38142722)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhvVehsro%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Acupuncture%20alleviates%20CUMS-induced%20depression-like%20behaviors%20of%20rats%20by%20regulating%20oxidative%20stress%2C%20neuroinflammation%20and%20ferroptosis&journal=Brain%20Res.&doi=10.1016%2Fj.brainres.2023.148715&volume=1826&publication_year=2024&author=Shen%2CJ) 
  1. Zhang, M. et al. Ketamine may exert rapid antidepressant effects through modulation of neuroplasticity, autophagy, and ferroptosis in the habenular nucleus. Neuroscience 506, 29–37 (2022).
[Article](https://doi.org/10.1016%2Fj.neuroscience.2022.10.015)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36280022)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xislentr3O)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ketamine%20may%20exert%20rapid%20antidepressant%20effects%20through%20modulation%20of%20neuroplasticity%2C%20autophagy%2C%20and%20ferroptosis%20in%20the%20habenular%20nucleus&journal=Neuroscience&doi=10.1016%2Fj.neuroscience.2022.10.015&volume=506&pages=29-37&publication_year=2022&author=Zhang%2CM) 
  1. Finnerup, N. B., Kuner, R. & Jensen, T. S. Neuropathic pain: from mechanisms to treatment. Physiol. Rev. 101, 259–301 (2021).
[Article](https://doi.org/10.1152%2Fphysrev.00045.2019)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32584191)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhsV2rtLbJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Neuropathic%20pain%3A%20from%20mechanisms%20to%20treatment&journal=Physiol.%20Rev.&doi=10.1152%2Fphysrev.00045.2019&volume=101&pages=259-301&publication_year=2021&author=Finnerup%2CNB&author=Kuner%2CR&author=Jensen%2CTS) 
  1. Wang, H. et al. Ferroptosis is involved in the development of neuropathic pain and allodynia. Mol. Cell Biochem. 476, 3149–3161 (2021).
[Article](https://link.springer.com/doi/10.1007/s11010-021-04138-w)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33864570)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXptVWltbg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20is%20involved%20in%20the%20development%20of%20neuropathic%20pain%20and%20allodynia&journal=Mol.%20Cell%20Biochem.&doi=10.1007%2Fs11010-021-04138-w&volume=476&pages=3149-3161&publication_year=2021&author=Wang%2CH) 
  1. Tang, J. et al. TRIM28 Fosters microglia ferroptosis via autophagy modulation to enhance neuropathic pain and neuroinflammation. Mol. Neurobiol. https://doi.org/10.1007/s12035-024-04133-4 (2024).
  1. Wan, K. et al. Electroacupuncture alleviates neuropathic pain by suppressing ferroptosis in dorsal root ganglion via SAT1/ALOX15 Signaling. Mol. Neurobiol. 60, 6121–6132 (2023).
[Article](https://link.springer.com/doi/10.1007/s12035-023-03463-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37421564)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVGrsbnP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Electroacupuncture%20alleviates%20neuropathic%20pain%20by%20suppressing%20ferroptosis%20in%20dorsal%20root%20ganglion%20via%20SAT1%2FALOX15%20Signaling&journal=Mol.%20Neurobiol.&doi=10.1007%2Fs12035-023-03463-z&volume=60&pages=6121-6132&publication_year=2023&author=Wan%2CK) 
  1. Guo, Y. et al. Inhibition of ferroptosis-like cell death attenuates neuropathic pain reactions induced by peripheral nerve injury in rats. Eur. J. Pain. 25, 1227–1240 (2021).
[Article](https://doi.org/10.1002%2Fejp.1737)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33497529)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhs1Gku7fM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20ferroptosis-like%20cell%20death%20attenuates%20neuropathic%20pain%20reactions%20induced%20by%20peripheral%20nerve%20injury%20in%20rats&journal=Eur.%20J.%20Pain.&doi=10.1002%2Fejp.1737&volume=25&pages=1227-1240&publication_year=2021&author=Guo%2CY) 
  1. Ding, Z. et al. Inhibition of spinal ferroptosis-like cell death alleviates hyperalgesia and spontaneous pain in a mouse model of bone cancer pain. Redox Biol. 62, 102700 (2023).
[Article](https://doi.org/10.1016%2Fj.redox.2023.102700)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37084690)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10141498)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXotFClsbY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20spinal%20ferroptosis-like%20cell%20death%20alleviates%20hyperalgesia%20and%20spontaneous%20pain%20in%20a%20mouse%20model%20of%20bone%20cancer%20pain&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2023.102700&volume=62&publication_year=2023&author=Ding%2CZ) 
  1. Liu, T. et al. Methyl ferulic acid alleviates neuropathic pain by inhibiting Nox4-induced ferroptosis in dorsal root ganglia neurons in rats. Mol. Neurobiol. 60, 3175–3189 (2023).
[Article](https://link.springer.com/doi/10.1007/s12035-023-03270-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36813954)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXjslGjtLY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Methyl%20ferulic%20acid%20alleviates%20neuropathic%20pain%20by%20inhibiting%20Nox4-induced%20ferroptosis%20in%20dorsal%20root%20ganglia%20neurons%20in%20rats&journal=Mol.%20Neurobiol.&doi=10.1007%2Fs12035-023-03270-6&volume=60&pages=3175-3189&publication_year=2023&author=Liu%2CT) 
  1. Maas et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol. 16, 987–1048 (2017).
[Article](https://doi.org/10.1016%2FS1474-4422%2817%2930371-X)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29122524)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Traumatic%20brain%20injury%3A%20integrated%20approaches%20to%20improve%20prevention%2C%20clinical%20care%2C%20and%20research&journal=Lancet%20Neurol.&doi=10.1016%2FS1474-4422%2817%2930371-X&volume=16&pages=987-1048&publication_year=2017&author=Maas%2C) 
  1. Shi, H. et al. Role of Toll-like receptor mediated signaling in traumatic brain injury. Neuropharmacology 145, 259–267 (2019).
[Article](https://doi.org/10.1016%2Fj.neuropharm.2018.07.022)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30075158)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXhsVCntr7J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20Toll-like%20receptor%20mediated%20signaling%20in%20traumatic%20brain%20injury&journal=Neuropharmacology&doi=10.1016%2Fj.neuropharm.2018.07.022&volume=145&pages=259-267&publication_year=2019&author=Shi%2CH) 
  1. Zhao, Z. A. et al. Cellular and molecular mechanisms in vascular repair after traumatic brain injury: a narrative review. Burns Trauma 11, tkad033 (2023).
[Article](https://doi.org/10.1093%2Fburnst%2Ftkad033)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37675267)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10478165)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cellular%20and%20molecular%20mechanisms%20in%20vascular%20repair%20after%20traumatic%20brain%20injury%3A%20a%20narrative%20review&journal=Burns%20Trauma&doi=10.1093%2Fburnst%2Ftkad033&volume=11&publication_year=2023&author=Zhao%2CZA) 
  1. Fang, J. et al. Ferroptosis in brain microvascular endothelial cells mediates blood-brain barrier disruption after traumatic brain injury. Biochem. Biophys. Res. Commun. 619, 34–41 (2022).
[Article](https://doi.org/10.1016%2Fj.bbrc.2022.06.040)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35728282)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhsFCrt7jO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20in%20brain%20microvascular%20endothelial%20cells%20mediates%20blood-brain%20barrier%20disruption%20after%20traumatic%20brain%20injury&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2022.06.040&volume=619&pages=34-41&publication_year=2022&author=Fang%2CJ) 
  1. Geng, Z. et al. Ferroptosis and traumatic brain injury. Brain Res. Bull. 172, 212–219 (2021).
[Article](https://doi.org/10.1016%2Fj.brainresbull.2021.04.023)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33932492)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhvVKhsrfK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20and%20traumatic%20brain%20injury&journal=Brain%20Res.%20Bull.&doi=10.1016%2Fj.brainresbull.2021.04.023&volume=172&pages=212-219&publication_year=2021&author=Geng%2CZ) 
  1. Liang, Y. et al. Deferoxamine reduces endothelial ferroptosis and protects cerebrovascular function after experimental traumatic brain injury. Brain Res. Bull. 207, 110878 (2024).
[Article](https://doi.org/10.1016%2Fj.brainresbull.2024.110878)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38218407)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhsFGqurc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deferoxamine%20reduces%20endothelial%20ferroptosis%20and%20protects%20cerebrovascular%20function%20after%20experimental%20traumatic%20brain%20injury&journal=Brain%20Res.%20Bull.&doi=10.1016%2Fj.brainresbull.2024.110878&volume=207&publication_year=2024&author=Liang%2CY) 
  1. Xie, B. S. et al. Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci. Ther. 25, 465–475 (2019).
[Article](https://doi.org/10.1111%2Fcns.13069)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30264934)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXls1Krsbo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20ferroptosis%20attenuates%20tissue%20damage%20and%20improves%20long-term%20outcomes%20after%20traumatic%20brain%20injury%20in%20mice&journal=CNS%20Neurosci.%20Ther.&doi=10.1111%2Fcns.13069&volume=25&pages=465-475&publication_year=2019&author=Xie%2CBS) 
  1. Rui, T. et al. Deletion of ferritin H in neurons counteracts the protective effect of melatonin against traumatic brain injury-induced ferroptosis. J. Pineal Res 70, e12704 (2021).
[Article](https://doi.org/10.1111%2Fjpi.12704)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33206394)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXisVCjsr7N)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deletion%20of%20ferritin%20H%20in%20neurons%20counteracts%20the%20protective%20effect%20of%20melatonin%20against%20traumatic%20brain%20injury-induced%20ferroptosis&journal=J.%20Pineal%20Res&doi=10.1111%2Fjpi.12704&volume=70&publication_year=2021&author=Rui%2CT) 
  1. Gao, Y. et al. Melatonin ameliorates neurological deficits through MT2/IL-33/ferritin H signaling-mediated inhibition of neuroinflammation and ferroptosis after traumatic brain injury. Free Radic. Biol. Med. 199, 97–112 (2023).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2023.02.014)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36805045)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXjvFCit7s%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Melatonin%20ameliorates%20neurological%20deficits%20through%20MT2%2FIL-33%2Fferritin%20H%20signaling-mediated%20inhibition%20of%20neuroinflammation%20and%20ferroptosis%20after%20traumatic%20brain%20injury&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2023.02.014&volume=199&pages=97-112&publication_year=2023&author=Gao%2CY) 
  1. Fang, J. et al. Overexpression of GPX4 attenuates cognitive dysfunction through inhibiting hippocampus ferroptosis and neuroinflammation after traumatic brain injury. Free Radic. Biol. Med. 204, 68–81 (2023).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2023.04.014)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37105419)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXovFOqtLY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Overexpression%20of%20GPX4%20attenuates%20cognitive%20dysfunction%20through%20inhibiting%20hippocampus%20ferroptosis%20and%20neuroinflammation%20after%20traumatic%20brain%20injury&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2023.04.014&volume=204&pages=68-81&publication_year=2023&author=Fang%2CJ) 
  1. Zhang, Z. et al. Glutathione peroxidase 4 participates in secondary brain injury through mediating ferroptosis in a rat model of intracerebral hemorrhage. Brain Res. 1701, 112–125 (2018).
[Article](https://doi.org/10.1016%2Fj.brainres.2018.09.012)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30205109)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXhslahs7jF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Glutathione%20peroxidase%204%20participates%20in%20secondary%20brain%20injury%20through%20mediating%20ferroptosis%20in%20a%20rat%20model%20of%20intracerebral%20hemorrhage&journal=Brain%20Res.&doi=10.1016%2Fj.brainres.2018.09.012&volume=1701&pages=112-125&publication_year=2018&author=Zhang%2CZ) 
  1. Zhang, Y. et al. Netrin-1 upregulates GPX4 and prevents ferroptosis after traumatic brain injury via the UNC5B/Nrf2 signaling pathway. CNS Neurosci. Ther. 29, 216–227 (2023).
[Article](https://doi.org/10.1111%2Fcns.13997)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36468399)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XjtVylsrjI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Netrin-1%20upregulates%20GPX4%20and%20prevents%20ferroptosis%20after%20traumatic%20brain%20injury%20via%20the%20UNC5B%2FNrf2%20signaling%20pathway&journal=CNS%20Neurosci.%20Ther.&doi=10.1111%2Fcns.13997&volume=29&pages=216-227&publication_year=2023&author=Zhang%2CY) 
  1. Huang, L. et al. Polydatin alleviates traumatic brain injury: role of inhibiting ferroptosis. Biochem. Biophys. Res. Commun. 556, 149–155 (2021).
[Article](https://doi.org/10.1016%2Fj.bbrc.2021.03.108)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33839410)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXoslKisbk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Polydatin%20alleviates%20traumatic%20brain%20injury%3A%20role%20of%20inhibiting%20ferroptosis&journal=Biochem.%20Biophys.%20Res.%20Commun.&doi=10.1016%2Fj.bbrc.2021.03.108&volume=556&pages=149-155&publication_year=2021&author=Huang%2CL) 
  1. Alim, I. et al. Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell 177, 1262–1279 e25 (2019).
[Article](https://doi.org/10.1016%2Fj.cell.2019.03.032)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31056284)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXovVOmtr8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Selenium%20drives%20a%20transcriptional%20adaptive%20program%20to%20block%20ferroptosis%20and%20treat%20stroke&journal=Cell&doi=10.1016%2Fj.cell.2019.03.032&volume=177&pages=1262-1279%20e25&publication_year=2019&author=Alim%2CI) 
  1. Gao, Y. et al. Annexin A5 ameliorates traumatic brain injury-induced neuroinflammation and neuronal ferroptosis by modulating the NF-kB/HMGB1 and Nrf2/HO-1 pathways. Int. Immunopharmacol. 114, 109619 (2023).
[Article](https://doi.org/10.1016%2Fj.intimp.2022.109619)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36700781)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XjtFKntrrK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Annexin%20A5%20ameliorates%20traumatic%20brain%20injury-induced%20neuroinflammation%20and%20neuronal%20ferroptosis%20by%20modulating%20the%20NF-kB%2FHMGB1%20and%20Nrf2%2FHO-1%20pathways&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2022.109619&volume=114&publication_year=2023&author=Gao%2CY) 
  1. Shi, H. et al. Edaravone alleviates traumatic brain injury by inhibition of ferroptosis via FSP1 pathway. Mol. Neurobiol. https://doi.org/10.1007/s12035-024-04216-2 (2024).
  1. Hogan, S. R. et al. Discovery of lipidome alterations following traumatic brain injury via high-resolution metabolomics. J. Proteome Res. 17, 2131–2143 (2018).
[Article](https://doi.org/10.1021%2Facs.jproteome.8b00068)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29671324)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7341947)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXnvV2ltLs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Discovery%20of%20lipidome%20alterations%20following%20traumatic%20brain%20injury%20via%20high-resolution%20metabolomics&journal=J.%20Proteome%20Res.&doi=10.1021%2Facs.jproteome.8b00068&volume=17&pages=2131-2143&publication_year=2018&author=Hogan%2CSR) 
  1. Kenny, E. M. et al. Ferroptosis contributes to neuronal death and functional outcome after traumatic brain injury. Crit. Care Med. 47, 410–418 (2019).
[Article](https://doi.org/10.1097%2FCCM.0000000000003555)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30531185)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449247)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20contributes%20to%20neuronal%20death%20and%20functional%20outcome%20after%20traumatic%20brain%20injury&journal=Crit.%20Care%20Med.&doi=10.1097%2FCCM.0000000000003555&volume=47&pages=410-418&publication_year=2019&author=Kenny%2CEM) 
  1. Crichton, R. R., Ward, R. J. & Hider, R. C. The efficacy of iron chelators for removing iron from specific brain regions and the pituitary-ironing out the brain. Pharmaceuticals 12, 138 (2019).
  1. Yu, J. et al. Effects of deferoxamine mesylate on hematoma and perihematoma edema after traumatic intracerebral hemorrhage. J. Neurotrauma 34, 2753–2759 (2017).
[Article](https://doi.org/10.1089%2Fneu.2017.5033)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28462672)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effects%20of%20deferoxamine%20mesylate%20on%20hematoma%20and%20perihematoma%20edema%20after%20traumatic%20intracerebral%20hemorrhage&journal=J.%20Neurotrauma&doi=10.1089%2Fneu.2017.5033&volume=34&pages=2753-2759&publication_year=2017&author=Yu%2CJ) 
  1. Yu, Y. et al. The clinical effect of deferoxamine mesylate on edema after intracerebral hemorrhage. PLoS One 10, e0122371 (2015).
[Article](https://doi.org/10.1371%2Fjournal.pone.0122371)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25875777)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4395224)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20clinical%20effect%20of%20deferoxamine%20mesylate%20on%20edema%20after%20intracerebral%20hemorrhage&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0122371&volume=10&publication_year=2015&author=Yu%2CY) 
  1. Jia, H. et al. Deferoxamine ameliorates neurological dysfunction by inhibiting ferroptosis and neuroinflammation after traumatic brain injury. Brain Res. 1812, 148383 (2023).
[Article](https://doi.org/10.1016%2Fj.brainres.2023.148383)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37149247)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhtVKis7jJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deferoxamine%20ameliorates%20neurological%20dysfunction%20by%20inhibiting%20ferroptosis%20and%20neuroinflammation%20after%20traumatic%20brain%20injury&journal=Brain%20Res.&doi=10.1016%2Fj.brainres.2023.148383&volume=1812&publication_year=2023&author=Jia%2CH) 
  1. Zhang, C. et al. Deferoxamine induces autophagy following traumatic brain injury via TREM2 on microglia. Mol. Neurobiol. 61, 4649-4662 (2023).
  1. Cheng, Y. et al. Ferristatin II, an iron uptake inhibitor, exerts neuroprotection against traumatic brain injury via suppressing ferroptosis. ACS Chem. Neurosci. 13, 664–675 (2022).
[Article](https://doi.org/10.1021%2Facschemneuro.1c00819)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35143157)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xjt1Gmsrg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferristatin%20II%2C%20an%20iron%20uptake%20inhibitor%2C%20exerts%20neuroprotection%20against%20traumatic%20brain%20injury%20via%20suppressing%20ferroptosis&journal=ACS%20Chem.%20Neurosci.&doi=10.1021%2Facschemneuro.1c00819&volume=13&pages=664-675&publication_year=2022&author=Cheng%2CY) 
  1. Khalaf, S., Ahmad, A. S., Chamara, K. & Dore, S. Unique properties associated with the brain penetrant iron chelator HBED reveal remarkable beneficial effects after brain trauma. J. Neurotrauma 36, 43–53 (2018).
[Article](https://doi.org/10.1089%2Fneu.2017.5617)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29743006)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6306957)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Unique%20properties%20associated%20with%20the%20brain%20penetrant%20iron%20chelator%20HBED%20reveal%20remarkable%20beneficial%20effects%20after%20brain%20trauma&journal=J.%20Neurotrauma&doi=10.1089%2Fneu.2017.5617&volume=36&pages=43-53&publication_year=2018&author=Khalaf%2CS&author=Ahmad%2CAS&author=Chamara%2CK&author=Dore%2CS) 
  1. Cheng, H. et al. Neuroprotection of NRF2 against ferroptosis after traumatic brain injury in mice. Antioxidants 12,731 (2023).
  1. Zheng, B. et al. Netrin-1 mediates nerve innervation and angiogenesis leading to discogenic pain. J. Orthop. Transl. 39, 21–33 (2023).
[Google Scholar](http://scholar.google.com/scholar_lookup?&title=Netrin-1%20mediates%20nerve%20innervation%20and%20angiogenesis%20leading%20to%20discogenic%20pain&journal=J.%20Orthop.%20Transl.&volume=39&pages=21-33&publication_year=2023&author=Zheng%2CB) 
  1. Liang, J., Wu, S., Xie, W. & He, H. Ketamine ameliorates oxidative stress-induced apoptosis in experimental traumatic brain injury via the Nrf2 pathway. Drug Des. Devel Ther. 12, 845–853 (2018).
[Article](https://doi.org/10.2147%2FDDDT.S160046)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29713142)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5907785)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhtlCls7nK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ketamine%20ameliorates%20oxidative%20stress-induced%20apoptosis%20in%20experimental%20traumatic%20brain%20injury%20via%20the%20Nrf2%20pathway&journal=Drug%20Des.%20Devel%20Ther.&doi=10.2147%2FDDDT.S160046&volume=12&pages=845-853&publication_year=2018&author=Liang%2CJ&author=Wu%2CS&author=Xie%2CW&author=He%2CH) 
  1. Dong, W. et al. Curcumin plays neuroprotective roles against traumatic brain injury partly via Nrf2 signaling. Toxicol. Appl. Pharm. 346, 28–36 (2018).
[Article](https://doi.org/10.1016%2Fj.taap.2018.03.020)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXmsVaqurs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Curcumin%20plays%20neuroprotective%20roles%20against%20traumatic%20brain%20injury%20partly%20via%20Nrf2%20signaling&journal=Toxicol.%20Appl.%20Pharm.&doi=10.1016%2Fj.taap.2018.03.020&volume=346&pages=28-36&publication_year=2018&author=Dong%2CW) 
  1. Zagorski, J. W. et al. Differential effects of the Nrf2 activators tBHQ and CDDO-Im on the early events of T cell activation. Biochem. Pharm. 147, 67–76 (2018).
[Article](https://doi.org/10.1016%2Fj.bcp.2017.11.005)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29155145)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvValtbnO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Differential%20effects%20of%20the%20Nrf2%20activators%20tBHQ%20and%20CDDO-Im%20on%20the%20early%20events%20of%20T%20cell%20activation&journal=Biochem.%20Pharm.&doi=10.1016%2Fj.bcp.2017.11.005&volume=147&pages=67-76&publication_year=2018&author=Zagorski%2CJW) 
  1. Bursley, J. K. & Rockwell, C. E. Nrf2-dependent and -independent effects of tBHQ in activated murine B cells. Food Chem. Toxicol. 145, 111595 (2020).
[Article](https://doi.org/10.1016%2Fj.fct.2020.111595)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32702509)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568862)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhs1Gqsb%2FI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nrf2-dependent%20and%20-independent%20effects%20of%20tBHQ%20in%20activated%20murine%20B%20cells&journal=Food%20Chem.%20Toxicol.&doi=10.1016%2Fj.fct.2020.111595&volume=145&publication_year=2020&author=Bursley%2CJK&author=Rockwell%2CCE) 
  1. Tang, H. et al. Protective effects of hinokitiol on neuronal ferroptosis by activating the keap1/Nrf2/HO-1 pathway in traumatic brain injury. J. Neurotrauma 41, 734–750 (2024).
[Article](https://doi.org/10.1089%2Fneu.2023.0150)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37962273)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Protective%20effects%20of%20hinokitiol%20on%20neuronal%20ferroptosis%20by%20activating%20the%20keap1%2FNrf2%2FHO-1%20pathway%20in%20traumatic%20brain%20injury&journal=J.%20Neurotrauma&doi=10.1089%2Fneu.2023.0150&volume=41&pages=734-750&publication_year=2024&author=Tang%2CH) 
  1. Li, N. et al. Electroacupuncture inhibits neural ferroptosis in rat model of traumatic brain injury via activating system Xc-/GSH/GPX4 Axis. Curr. Neurovasc. Res. 21, 86-100 (2024).
  1. Yang, Q. et al. Intermittent fasting ameliorates neuronal ferroptosis and cognitive impairment in mice after traumatic brain injury. Nutrition 109, 111992 (2023).
[Article](https://doi.org/10.1016%2Fj.nut.2023.111992)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36871445)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXlsVarsLY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Intermittent%20fasting%20ameliorates%20neuronal%20ferroptosis%20and%20cognitive%20impairment%20in%20mice%20after%20traumatic%20brain%20injury&journal=Nutrition&doi=10.1016%2Fj.nut.2023.111992&volume=109&publication_year=2023&author=Yang%2CQ) 
  1. Wang, D. et al. Mesenchymal stromal cell treatment attenuates repetitive mild traumatic brain injury-induced persistent cognitive deficits via suppressing ferroptosis. J. Neuroinflammation 19, 185 (2022).
[Article](https://link.springer.com/doi/10.1186/s12974-022-02550-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35836233)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9281149)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhvFyitbfM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mesenchymal%20stromal%20cell%20treatment%20attenuates%20repetitive%20mild%20traumatic%20brain%20injury-induced%20persistent%20cognitive%20deficits%20via%20suppressing%20ferroptosis&journal=J.%20Neuroinflammation&doi=10.1186%2Fs12974-022-02550-7&volume=19&publication_year=2022&author=Wang%2CD) 
  1. Hu, X. et al. Spinal cord injury: molecular mechanisms and therapeutic interventions. Signal. Transduct. Target Ther. 8, 245 (2023).
[Article](https://doi.org/10.1038%2Fs41392-023-01477-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37357239)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10291001)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhtlKrtrzE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Spinal%20cord%20injury%3A%20molecular%20mechanisms%20and%20therapeutic%20interventions&journal=Signal.%20Transduct.%20Target%20Ther.&doi=10.1038%2Fs41392-023-01477-6&volume=8&publication_year=2023&author=Hu%2CX) 
  1. Liu, D. et al. ROS-scavenging hydrogels synergize with neural stem cells to enhance spinal cord injury repair via regulating microenvironment and facilitating nerve regeneration. Adv. Health. Mater. 12, e2300123 (2023).
[Article](https://doi.org/10.1002%2Fadhm.202300123)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ROS-scavenging%20hydrogels%20synergize%20with%20neural%20stem%20cells%20to%20enhance%20spinal%20cord%20injury%20repair%20via%20regulating%20microenvironment%20and%20facilitating%20nerve%20regeneration&journal=Adv.%20Health.%20Mater.&doi=10.1002%2Fadhm.202300123&volume=12&publication_year=2023&author=Liu%2CD) 
  1. Ge, H. et al. Ferrostatin-1 alleviates white matter injury via decreasing ferroptosis following spinal cord injury. Mol. Neurobiol. 59, 161–176 (2022).
[Article](https://link.springer.com/doi/10.1007/s12035-021-02571-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34635980)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXit1Wqu77K)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferrostatin-1%20alleviates%20white%20matter%20injury%20via%20decreasing%20ferroptosis%20following%20spinal%20cord%20injury&journal=Mol.%20Neurobiol.&doi=10.1007%2Fs12035-021-02571-y&volume=59&pages=161-176&publication_year=2022&author=Ge%2CH) 
  1. Li, J. Z. et al. Bioinformatics analysis of ferroptosis in spinal cord injury. Neural Regen. Res. 18, 626–633 (2023).
[Article](https://doi.org/10.4103%2F1673-5374.350209)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36018187)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitFemu73P)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Bioinformatics%20analysis%20of%20ferroptosis%20in%20spinal%20cord%20injury&journal=Neural%20Regen.%20Res.&doi=10.4103%2F1673-5374.350209&volume=18&pages=626-633&publication_year=2023&author=Li%2CJZ) 
  1. Zhang, Y. et al. Ferroptosis inhibitor SRS 16-86 attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury. Brain Res. 1706, 48–57 (2019).
[Article](https://doi.org/10.1016%2Fj.brainres.2018.10.023)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30352209)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXitVCktL7M)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20inhibitor%20SRS%2016-86%20attenuates%20ferroptosis%20and%20promotes%20functional%20recovery%20in%20contusion%20spinal%20cord%20injury&journal=Brain%20Res.&doi=10.1016%2Fj.brainres.2018.10.023&volume=1706&pages=48-57&publication_year=2019&author=Zhang%2CY) 
  1. Qu, D. et al. Identification and validation of ferroptosis-related genes in patients with acute spinal cord injury. Mol. Neurobiol. 60, 5411–5425 (2023).
[Article](https://link.springer.com/doi/10.1007/s12035-023-03423-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37316756)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht1ejsb%2FN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identification%20and%20validation%20of%20ferroptosis-related%20genes%20in%20patients%20with%20acute%20spinal%20cord%20injury&journal=Mol.%20Neurobiol.&doi=10.1007%2Fs12035-023-03423-7&volume=60&pages=5411-5425&publication_year=2023&author=Qu%2CD) 
  1. Geng, H. et al. Restoring neuronal iron homeostasis revitalizes neurogenesis after spinal cord injury. Proc. Natl. Acad. Sci. USA 120, e2220300120 (2023).
[Article](https://doi.org/10.1073%2Fpnas.2220300120)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37948584)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10655560)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXis1ertL3I)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Restoring%20neuronal%20iron%20homeostasis%20revitalizes%20neurogenesis%20after%20spinal%20cord%20injury&journal=Proc.%20Natl.%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.2220300120&volume=120&publication_year=2023&author=Geng%2CH) 
  1. Xu, T. et al. FGF21 prevents neuronal cell ferroptosis after spinal cord injury by activating the FGFR1/beta-Klotho pathway. Brain Res. Bull. 202, 110753 (2023).
[Article](https://doi.org/10.1016%2Fj.brainresbull.2023.110753)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37660729)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFemtrjM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=FGF21%20prevents%20neuronal%20cell%20ferroptosis%20after%20spinal%20cord%20injury%20by%20activating%20the%20FGFR1%2Fbeta-Klotho%20pathway&journal=Brain%20Res.%20Bull.&doi=10.1016%2Fj.brainresbull.2023.110753&volume=202&publication_year=2023&author=Xu%2CT) 
  1. Wang, C. et al. USP7 regulates HMOX-1 via deubiquitination to suppress ferroptosis and ameliorate spinal cord injury in rats. Neurochem. Int. 168, 105554 (2023).
[Article](https://doi.org/10.1016%2Fj.neuint.2023.105554)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37257587)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht1alsrbF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=USP7%20regulates%20HMOX-1%20via%20deubiquitination%20to%20suppress%20ferroptosis%20and%20ameliorate%20spinal%20cord%20injury%20in%20rats&journal=Neurochem.%20Int.&doi=10.1016%2Fj.neuint.2023.105554&volume=168&publication_year=2023&author=Wang%2CC) 
  1. Yu, Z. et al. The ferroptosis activity is associated with neurological recovery following chronic compressive spinal cord injury. Neural Regen. Res. 18, 2482–2488 (2023).
[Article](https://doi.org/10.4103%2F1673-5374.371378)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37282480)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360078)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXksFyqtLc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20ferroptosis%20activity%20is%20associated%20with%20neurological%20recovery%20following%20chronic%20compressive%20spinal%20cord%20injury&journal=Neural%20Regen.%20Res.&doi=10.4103%2F1673-5374.371378&volume=18&pages=2482-2488&publication_year=2023&author=Yu%2CZ) 
  1. Shi, J. et al. Amelioration of white matter injury through mitigating ferroptosis following hepcidin treatment after spinal cord injury. Mol. Neurobiol. 60, 3365–3378 (2023).
[Article](https://link.springer.com/doi/10.1007/s12035-023-03287-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36853431)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXktFOlsbc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Amelioration%20of%20white%20matter%20injury%20through%20mitigating%20ferroptosis%20following%20hepcidin%20treatment%20after%20spinal%20cord%20injury&journal=Mol.%20Neurobiol.&doi=10.1007%2Fs12035-023-03287-x&volume=60&pages=3365-3378&publication_year=2023&author=Shi%2CJ) 
  1. Yao, X. et al. Deferoxamine promotes recovery of traumatic spinal cord injury by inhibiting ferroptosis. Neural Regen. Res. 14, 532–541 (2019).
[Article](https://doi.org/10.4103%2F1673-5374.245480)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30539824)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6334606)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhslelsLvF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deferoxamine%20promotes%20recovery%20of%20traumatic%20spinal%20cord%20injury%20by%20inhibiting%20ferroptosis&journal=Neural%20Regen.%20Res.&doi=10.4103%2F1673-5374.245480&volume=14&pages=532-541&publication_year=2019&author=Yao%2CX) 
  1. Fan, B. Y. et al. Liproxstatin-1 is an effective inhibitor of oligodendrocyte ferroptosis induced by inhibition of glutathione peroxidase 4. Neural Regen. Res. 16, 561–566 (2021).
[Article](https://doi.org/10.4103%2F1673-5374.293157)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32985488)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xitl2jtL%2FP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Liproxstatin-1%20is%20an%20effective%20inhibitor%20of%20oligodendrocyte%20ferroptosis%20induced%20by%20inhibition%20of%20glutathione%20peroxidase%204&journal=Neural%20Regen.%20Res.&doi=10.4103%2F1673-5374.293157&volume=16&pages=561-566&publication_year=2021&author=Fan%2CBY) 
  1. Friedmann Angeli, J. P. & Conrad, M. Selenium and GPX4, a vital symbiosis. Free Radic. Biol. Med. 127, 153–159 (2018).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2018.03.001)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29522794)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXkslSgu7k%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Selenium%20and%20GPX4%2C%20a%20vital%20symbiosis&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2018.03.001&volume=127&pages=153-159&publication_year=2018&author=Friedmann%20Angeli%2CJP&author=Conrad%2CM) 
  1. Chen, Y. X. et al. Sodium selenite promotes neurological function recovery after spinal cord injury by inhibiting ferroptosis. Neural Regen. Res 17, 2702–2709 (2022).
[Article](https://doi.org/10.4103%2F1673-5374.314322)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35662217)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9165358)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsFGlurbL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Sodium%20selenite%20promotes%20neurological%20function%20recovery%20after%20spinal%20cord%20injury%20by%20inhibiting%20ferroptosis&journal=Neural%20Regen.%20Res&doi=10.4103%2F1673-5374.314322&volume=17&pages=2702-2709&publication_year=2022&author=Chen%2CYX) 
  1. Bao, J. & Yang, S. ScRNA analysis and ferroptosis-related ceRNA regulatory network investigation in microglia cells at different time points after spinal cord injury. J. Orthop. Surg. Res. 18, 701 (2023).
[Article](https://link.springer.com/doi/10.1186/s13018-023-04195-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37726826)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507978)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ScRNA%20analysis%20and%20ferroptosis-related%20ceRNA%20regulatory%20network%20investigation%20in%20microglia%20cells%20at%20different%20time%20points%20after%20spinal%20cord%20injury&journal=J.%20Orthop.%20Surg.%20Res.&doi=10.1186%2Fs13018-023-04195-5&volume=18&publication_year=2023&author=Bao%2CJ&author=Yang%2CS) 
  1. Li, W. et al. Ferroptosis inhibition protects vascular endothelial cells and maintains integrity of the blood-spinal cord barrier after spinal cord injury. Neural Regen. Res. 18, 2474–2481 (2023).
[Article](https://doi.org/10.4103%2F1673-5374.371377)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37282479)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10360107)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXksFyqtLY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20inhibition%20protects%20vascular%20endothelial%20cells%20and%20maintains%20integrity%20of%20the%20blood-spinal%20cord%20barrier%20after%20spinal%20cord%20injury&journal=Neural%20Regen.%20Res.&doi=10.4103%2F1673-5374.371377&volume=18&pages=2474-2481&publication_year=2023&author=Li%2CW) 
  1. Feng, Z. et al. Iron overload in the motor cortex induces neuronal ferroptosis following spinal cord injury. Redox Biol. 43, 101984 (2021).
[Article](https://doi.org/10.1016%2Fj.redox.2021.101984)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33933882)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8105676)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVSqtL7F)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20overload%20in%20the%20motor%20cortex%20induces%20neuronal%20ferroptosis%20following%20spinal%20cord%20injury&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2021.101984&volume=43&publication_year=2021&author=Feng%2CZ) 
  1. Shen, W. et al. Celastrol inhibits oligodendrocyte and neuron ferroptosis to promote spinal cord injury recovery. Phytomedicine 128, 155380 (2024).
[Article](https://doi.org/10.1016%2Fj.phymed.2024.155380)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38507854)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXmtlyltLk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Celastrol%20inhibits%20oligodendrocyte%20and%20neuron%20ferroptosis%20to%20promote%20spinal%20cord%20injury%20recovery&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2024.155380&volume=128&publication_year=2024&author=Shen%2CW) 
  1. Ni, C. et al. Resveratrol inhibits ferroptosis via activating NRF2/GPX4 pathway in mice with spinal cord injury. Microsc. Res. Tech. 86, 1378–1390 (2023).
[Article](https://doi.org/10.1002%2Fjemt.24335)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37129001)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXptVOntLs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Resveratrol%20inhibits%20ferroptosis%20via%20activating%20NRF2%2FGPX4%20pathway%20in%20mice%20with%20spinal%20cord%20injury&journal=Microsc.%20Res.%20Tech.&doi=10.1002%2Fjemt.24335&volume=86&pages=1378-1390&publication_year=2023&author=Ni%2CC) 
  1. Zhang, L. et al. Albiflorin attenuates neuroinflammation and improves functional recovery after spinal cord injury through regulating LSD1-mediated microglial activation and ferroptosis. Inflammation 47,1313-1327 (2024).
  1. Wang, Z. et al. Metformin attenuates ferroptosis and promotes functional recovery of spinal cord injury. World Neurosurg. 167, e929–e939 (2022).
[Article](https://doi.org/10.1016%2Fj.wneu.2022.08.121)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36058489)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metformin%20attenuates%20ferroptosis%20and%20promotes%20functional%20recovery%20of%20spinal%20cord%20injury&journal=World%20Neurosurg.&doi=10.1016%2Fj.wneu.2022.08.121&volume=167&pages=e929-e939&publication_year=2022&author=Wang%2CZ) 
  1. Wang, Z. et al. Metformin alleviates spinal cord injury by inhibiting nerve cell ferroptosis through upregulation of heme oxygenase-1 expression. Neural Regen. Res. 19, 2041–2049 (2024).
[Article](https://doi.org/10.4103%2F1673-5374.390960)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38227534)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metformin%20alleviates%20spinal%20cord%20injury%20by%20inhibiting%20nerve%20cell%20ferroptosis%20through%20upregulation%20of%20heme%20oxygenase-1%20expression&journal=Neural%20Regen.%20Res.&doi=10.4103%2F1673-5374.390960&volume=19&pages=2041-2049&publication_year=2024&author=Wang%2CZ) 
  1. Zhou, H. et al. Proanthocyanidin promotes functional recovery of spinal cord injury via inhibiting ferroptosis. J. Chem. Neuroanat. 107, 101807 (2020).
[Article](https://doi.org/10.1016%2Fj.jchemneu.2020.101807)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32474063)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtVGls7bE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Proanthocyanidin%20promotes%20functional%20recovery%20of%20spinal%20cord%20injury%20via%20inhibiting%20ferroptosis&journal=J.%20Chem.%20Neuroanat.&doi=10.1016%2Fj.jchemneu.2020.101807&volume=107&publication_year=2020&author=Zhou%2CH) 
  1. Ge, M. H. et al. Zinc attenuates ferroptosis and promotes functional recovery in contusion spinal cord injury by activating Nrf2/GPX4 defense pathway. CNS Neurosci. Ther. 27, 1023–1040 (2021).
[Article](https://doi.org/10.1111%2Fcns.13657)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33951302)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8339532)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhslGisrjO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Zinc%20attenuates%20ferroptosis%20and%20promotes%20functional%20recovery%20in%20contusion%20spinal%20cord%20injury%20by%20activating%20Nrf2%2FGPX4%20defense%20pathway&journal=CNS%20Neurosci.%20Ther.&doi=10.1111%2Fcns.13657&volume=27&pages=1023-1040&publication_year=2021&author=Ge%2CMH) 
  1. Xu, J. et al. Identification of cathepsin B as a therapeutic target for ferroptosis of macrophage after spinal cord injury. Aging Dis. 15, 421–443 (2023).
[Article](https://doi.org/10.14336%2FAD.2023.0509)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37307830)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identification%20of%20cathepsin%20B%20as%20a%20therapeutic%20target%20for%20ferroptosis%20of%20macrophage%20after%20spinal%20cord%20injury&journal=Aging%20Dis.&doi=10.14336%2FAD.2023.0509&volume=15&pages=421-443&publication_year=2023&author=Xu%2CJ) 
  1. Virani, S. S. et al. Heart disease and stroke statistics-2021 update: a report from the american heart association. Circulation 143, e254–e743 (2021).
[Article](https://doi.org/10.1161%2FCIR.0000000000000950)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33501848)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Heart%20disease%20and%20stroke%20statistics-2021%20update%3A%20a%20report%20from%20the%20american%20heart%20association&journal=Circulation&doi=10.1161%2FCIR.0000000000000950&volume=143&pages=e254-e743&publication_year=2021&author=Virani%2CSS) 
  1. Ajoolabady, A. et al. Targeting autophagy in ischemic stroke: from molecular mechanisms to clinical therapeutics. Pharm. Ther. 225, 107848 (2021).
[Article](https://doi.org/10.1016%2Fj.pharmthera.2021.107848)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXpsVOjsr8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20autophagy%20in%20ischemic%20stroke%3A%20from%20molecular%20mechanisms%20to%20clinical%20therapeutics&journal=Pharm.%20Ther.&doi=10.1016%2Fj.pharmthera.2021.107848&volume=225&publication_year=2021&author=Ajoolabady%2CA) 
  1. Walter, K. What is acute ischemic stroke? JAMA 327, 885 (2022).
[Article](https://doi.org/10.1001%2Fjama.2022.1420)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35230392)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=What%20is%20acute%20ischemic%20stroke%3F&journal=JAMA&doi=10.1001%2Fjama.2022.1420&volume=327&publication_year=2022&author=Walter%2CK) 
  1. Koton, S. et al. Association of ischemic stroke incidence, severity, and recurrence with dementia in the atherosclerosis risk in communities cohort study. JAMA Neurol. 79, 271–280 (2022).
[Article](https://doi.org/10.1001%2Fjamaneurol.2021.5080)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35072712)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8787684)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Association%20of%20ischemic%20stroke%20incidence%2C%20severity%2C%20and%20recurrence%20with%20dementia%20in%20the%20atherosclerosis%20risk%20in%20communities%20cohort%20study&journal=JAMA%20Neurol.&doi=10.1001%2Fjamaneurol.2021.5080&volume=79&pages=271-280&publication_year=2022&author=Koton%2CS) 
  1. Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion-from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).
[Article](https://doi.org/10.1038%2Fnm.2507)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22064429)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhsVOisLnJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ischemia%20and%20reperfusion-from%20mechanism%20to%20translation&journal=Nat.%20Med.&doi=10.1038%2Fnm.2507&volume=17&pages=1391-1401&publication_year=2011&author=Eltzschig%2CHK&author=Eckle%2CT) 
  1. Ding, S. et al. Delivery-mediated exosomal therapeutics in ischemia-reperfusion injury: advances, mechanisms, and future directions. Nano Converg. 11, 18 (2024).
[Article](https://link.springer.com/doi/10.1186/s40580-024-00423-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38689075)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11061094)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXpsFGqtbw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Delivery-mediated%20exosomal%20therapeutics%20in%20ischemia-reperfusion%20injury%3A%20advances%2C%20mechanisms%2C%20and%20future%20directions&journal=Nano%20Converg.&doi=10.1186%2Fs40580-024-00423-8&volume=11&publication_year=2024&author=Ding%2CS) 
  1. Cross, P. A., Atlas, S. W. & Grossman, R. I. MR evaluation of brain iron in children with cerebral infarction. AJNR Am. J. Neuroradiol. 11, 341–348 (1990).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2107716)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8334700)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK3c7psFymsQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=MR%20evaluation%20of%20brain%20iron%20in%20children%20with%20cerebral%20infarction&journal=AJNR%20Am.%20J.%20Neuroradiol.&volume=11&pages=341-348&publication_year=1990&author=Cross%2CPA&author=Atlas%2CSW&author=Grossman%2CRI) 
  1. Yeh, S. J. et al. Association of ferroptosis with severity and outcomes in acute ischemic stroke patients undergoing endovascular thrombectomy: a case-control study. Mol. Neurobiol. 60, 5902–5914 (2023).
[Article](https://link.springer.com/doi/10.1007/s12035-023-03448-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37357230)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht12ru7fE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Association%20of%20ferroptosis%20with%20severity%20and%20outcomes%20in%20acute%20ischemic%20stroke%20patients%20undergoing%20endovascular%20thrombectomy%3A%20a%20case-control%20study&journal=Mol.%20Neurobiol.&doi=10.1007%2Fs12035-023-03448-y&volume=60&pages=5902-5914&publication_year=2023&author=Yeh%2CSJ) 
  1. Millerot, E. et al. Serum ferritin in stroke: a marker of increased body iron stores or stroke severity? J. Cereb. Blood Flow. Metab. 25, 1386–1393 (2005).
[Article](https://doi.org/10.1038%2Fsj.jcbfm.9600140)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15902198)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXhtFGlt7%2FO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Serum%20ferritin%20in%20stroke%3A%20a%20marker%20of%20increased%20body%20iron%20stores%20or%20stroke%20severity%3F&journal=J.%20Cereb.%20Blood%20Flow.%20Metab.&doi=10.1038%2Fsj.jcbfm.9600140&volume=25&pages=1386-1393&publication_year=2005&author=Millerot%2CE) 
  1. DeGregorio-Rocasolano, N. et al. Iron-loaded transferrin (Tf) is detrimental whereas iron-free Tf confers protection against brain ischemia by modifying blood Tf saturation and subsequent neuronal damage. Redox Biol. 15, 143–158 (2018).
[Article](https://doi.org/10.1016%2Fj.redox.2017.11.026)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29248829)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvFykurfJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron-loaded%20transferrin%20%28Tf%29%20is%20detrimental%20whereas%20iron-free%20Tf%20confers%20protection%20against%20brain%20ischemia%20by%20modifying%20blood%20Tf%20saturation%20and%20subsequent%20neuronal%20damage&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2017.11.026&volume=15&pages=143-158&publication_year=2018&author=DeGregorio-Rocasolano%2CN) 
  1. Zhang, W. et al. Associations of dietary iron intake with mortality from cardiovascular disease: the JACC study. J. Epidemiol. 22, 484–493 (2012).
[Article](https://doi.org/10.2188%2Fjea.JE20120006)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22986645)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Associations%20of%20dietary%20iron%20intake%20with%20mortality%20from%20cardiovascular%20disease%3A%20the%20JACC%20study&journal=J.%20Epidemiol.&doi=10.2188%2Fjea.JE20120006&volume=22&pages=484-493&publication_year=2012&author=Zhang%2CW) 
  1. Zhang, Y. et al. Serum ferritin is associated with the presence of ischemic stroke among individuals with type 2 diabetes. Heliyon 10, e27898 (2024).
[Article](https://doi.org/10.1016%2Fj.heliyon.2024.e27898)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38486737)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10938112)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXmt1yitb8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Serum%20ferritin%20is%20associated%20with%20the%20presence%20of%20ischemic%20stroke%20among%20individuals%20with%20type%202%20diabetes&journal=Heliyon&doi=10.1016%2Fj.heliyon.2024.e27898&volume=10&publication_year=2024&author=Zhang%2CY) 
  1. van der, A. D. et al. Serum ferritin is a risk factor for stroke in postmenopausal women. Stroke 36, 1637–1641 (2005).
[Article](https://doi.org/10.1161%2F01.STR.0000173172.82880.72)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Serum%20ferritin%20is%20a%20risk%20factor%20for%20stroke%20in%20postmenopausal%20women&journal=Stroke&doi=10.1161%2F01.STR.0000173172.82880.72&volume=36&pages=1637-1641&publication_year=2005&author=der%2CAD) 
  1. Valdes Hernandez, M. D. C. et al. Association between striatal brain iron deposition, microbleeds and cognition 1 year after a minor ischaemic stroke. Int. J. Mol. Sci. 20, 1293 (2019).
  1. Millan, M. et al. Targeting pro-oxidant iron with deferoxamine as a treatment for ischemic stroke: safety and optimal dose selection in a randomized clinical trial. Antioxidants 10, 1270 (2021).
  1. Mehta, S. H. et al. Neuroprotection by tempol in a model of iron-induced oxidative stress in acute ischemic stroke. Am. J. Physiol. Regul. Integr. Comp. Physiol. 286, R283–R288 (2004).
[Article](https://doi.org/10.1152%2Fajpregu.00446.2002)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14592931)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXhsFKrurc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Neuroprotection%20by%20tempol%20in%20a%20model%20of%20iron-induced%20oxidative%20stress%20in%20acute%20ischemic%20stroke&journal=Am.%20J.%20Physiol.%20Regul.%20Integr.%20Comp.%20Physiol.&doi=10.1152%2Fajpregu.00446.2002&volume=286&pages=R283-R288&publication_year=2004&author=Mehta%2CSH) 
  1. Justicia, C., Ramos-Cabrer, P. & Hoehn, M. MRI detection of secondary damage after stroke: chronic iron accumulation in the thalamus of the rat brain. Stroke 39, 1541–1547 (2008).
[Article](https://doi.org/10.1161%2FSTROKEAHA.107.503565)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18323485)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=MRI%20detection%20of%20secondary%20damage%20after%20stroke%3A%20chronic%20iron%20accumulation%20in%20the%20thalamus%20of%20the%20rat%20brain&journal=Stroke&doi=10.1161%2FSTROKEAHA.107.503565&volume=39&pages=1541-1547&publication_year=2008&author=Justicia%2CC&author=Ramos-Cabrer%2CP&author=Hoehn%2CM) 
  1. Zheng, H. et al. Cdh5-mediated Fpn1 deletion exerts neuroprotective effects during the acute phase and inhibitory effects during the recovery phase of ischemic stroke. Cell Death Dis. 14, 161 (2023).
[Article](https://doi.org/10.1038%2Fs41419-023-05688-1)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36841833)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9968354)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXjvFKktLg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cdh5-mediated%20Fpn1%20deletion%20exerts%20neuroprotective%20effects%20during%20the%20acute%20phase%20and%20inhibitory%20effects%20during%20the%20recovery%20phase%20of%20ischemic%20stroke&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-023-05688-1&volume=14&publication_year=2023&author=Zheng%2CH) 
  1. Su, W. et al. METTL3 regulates TFRC ubiquitination and ferroptosis through stabilizing NEDD4L mRNA to impact stroke. Cell Biol. Toxicol. 40, 8 (2024).
[Article](https://link.springer.com/doi/10.1007/s10565-024-09844-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38302612)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10834616)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXotlGgsbk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=METTL3%20regulates%20TFRC%20ubiquitination%20and%20ferroptosis%20through%20stabilizing%20NEDD4L%20mRNA%20to%20impact%20stroke&journal=Cell%20Biol.%20Toxicol.&doi=10.1007%2Fs10565-024-09844-x&volume=40&publication_year=2024&author=Su%2CW) 
  1. Li, C. et al. Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharm. Res. 174, 105933 (2021).
[Article](https://doi.org/10.1016%2Fj.phrs.2021.105933)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXisF2gsLfO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nuclear%20receptor%20coactivator%204-mediated%20ferritinophagy%20contributes%20to%20cerebral%20ischemia-induced%20ferroptosis%20in%20ischemic%20stroke&journal=Pharm.%20Res.&doi=10.1016%2Fj.phrs.2021.105933&volume=174&publication_year=2021&author=Li%2CC) 
  1. Cobley, J. N., Fiorello, M. L. & Bailey, D. M. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 15, 490–503 (2018).
[Article](https://doi.org/10.1016%2Fj.redox.2018.01.008)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29413961)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5881419)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXitV2ksrg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=13%20reasons%20why%20the%20brain%20is%20susceptible%20to%20oxidative%20stress&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2018.01.008&volume=15&pages=490-503&publication_year=2018&author=Cobley%2CJN&author=Fiorello%2CML&author=Bailey%2CDM) 
  1. Tuo, Q. Z. et al. Characterization of selenium compounds for anti-ferroptotic activity in neuronal cells and after cerebral ischemia-reperfusion injury. Neurotherapeutics 18, 2682–2691 (2021).
[Article](https://link.springer.com/doi/10.1007/s13311-021-01111-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34498224)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8804037)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXit1elu7rO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Characterization%20of%20selenium%20compounds%20for%20anti-ferroptotic%20activity%20in%20neuronal%20cells%20and%20after%20cerebral%20ischemia-reperfusion%20injury&journal=Neurotherapeutics&doi=10.1007%2Fs13311-021-01111-9&volume=18&pages=2682-2691&publication_year=2021&author=Tuo%2CQZ) 
  1. Lan, B. et al. Extract of Naotaifang, a compound Chinese herbal medicine, protects neuron ferroptosis induced by acute cerebral ischemia in rats. J. Integr. Med. 18, 344–350 (2020).
[Article](https://doi.org/10.1016%2Fj.joim.2020.01.008)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32107172)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Extract%20of%20Naotaifang%2C%20a%20compound%20Chinese%20herbal%20medicine%2C%20protects%20neuron%20ferroptosis%20induced%20by%20acute%20cerebral%20ischemia%20in%20rats&journal=J.%20Integr.%20Med.&doi=10.1016%2Fj.joim.2020.01.008&volume=18&pages=344-350&publication_year=2020&author=Lan%2CB) 
  1. Dingjan, I. et al. Endosomal and phagosomal SNAREs. Physiol. Rev. 98, 1465–1492 (2018).
[Article](https://doi.org/10.1152%2Fphysrev.00037.2017)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29790818)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXkvFekt7s%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Endosomal%20and%20phagosomal%20SNAREs&journal=Physiol.%20Rev.&doi=10.1152%2Fphysrev.00037.2017&volume=98&pages=1465-1492&publication_year=2018&author=Dingjan%2CI) 
  1. Si, W. et al. Snap25 attenuates neuronal injury via reducing ferroptosis in acute ischemic stroke. Exp. Neurol. 367, 114476 (2023).
[Article](https://doi.org/10.1016%2Fj.expneurol.2023.114476)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37393984)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVCjur%2FI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Snap25%20attenuates%20neuronal%20injury%20via%20reducing%20ferroptosis%20in%20acute%20ischemic%20stroke&journal=Exp.%20Neurol.&doi=10.1016%2Fj.expneurol.2023.114476&volume=367&publication_year=2023&author=Si%2CW) 
  1. Zimmermann, C. et al. Antioxidant status in acute stroke patients and patients at stroke risk. Eur. Neurol. 51, 157–161 (2004).
[Article](https://doi.org/10.1159%2F000077662)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15073440)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXjslOqsL0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Antioxidant%20status%20in%20acute%20stroke%20patients%20and%20patients%20at%20stroke%20risk&journal=Eur.%20Neurol.&doi=10.1159%2F000077662&volume=51&pages=157-161&publication_year=2004&author=Zimmermann%2CC) 
  1. Ahmad, S. et al. Sesamin attenuates neurotoxicity in mouse model of ischemic brain stroke. Neurotoxicology 45, 100–110 (2014).
[Article](https://doi.org/10.1016%2Fj.neuro.2014.10.002)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25316624)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhslKjtr%2FM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Sesamin%20attenuates%20neurotoxicity%20in%20mouse%20model%20of%20ischemic%20brain%20stroke&journal=Neurotoxicology&doi=10.1016%2Fj.neuro.2014.10.002&volume=45&pages=100-110&publication_year=2014&author=Ahmad%2CS) 
  1. Doll, S. & Conrad, M. Iron and ferroptosis: a still ill-defined liaison. IUBMB Life 69, 423–434 (2017).
[Article](https://doi.org/10.1002%2Fiub.1616)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28276141)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXjvFajtrs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20ferroptosis%3A%20a%20still%20ill-defined%20liaison&journal=IUBMB%20Life&doi=10.1002%2Fiub.1616&volume=69&pages=423-434&publication_year=2017&author=Doll%2CS&author=Conrad%2CM) 
  1. Krzyzanowska, W. et al. Ceftriaxone- and N-acetylcysteine-induced brain tolerance to ischemia: influence on glutamate levels in focal cerebral ischemia. PLoS One 12, e0186243 (2017).
[Article](https://doi.org/10.1371%2Fjournal.pone.0186243)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29045497)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5646803)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ceftriaxone-%20and%20N-acetylcysteine-induced%20brain%20tolerance%20to%20ischemia%3A%20influence%20on%20glutamate%20levels%20in%20focal%20cerebral%20ischemia&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0186243&volume=12&publication_year=2017&author=Krzyzanowska%2CW) 
  1. Krzyzanowska, W. et al. N-acetylcysteine and ceftriaxone as preconditioning strategies in focal brain ischemia: influence on glutamate transporters expression. Neurotox. Res. 29, 539–550 (2016).
[Article](https://link.springer.com/doi/10.1007/s12640-016-9602-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26861954)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820483)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XivVSmtbc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=N-acetylcysteine%20and%20ceftriaxone%20as%20preconditioning%20strategies%20in%20focal%20brain%20ischemia%3A%20influence%20on%20glutamate%20transporters%20expression&journal=Neurotox.%20Res.&doi=10.1007%2Fs12640-016-9602-z&volume=29&pages=539-550&publication_year=2016&author=Krzyzanowska%2CW) 
  1. Liu, X. et al. NADPH debt drives redox bankruptcy: SLC7A11/xCT-mediated cystine uptake as a double-edged sword in cellular redox regulation. Genes Dis. 8, 731–745 (2021).
[Article](https://doi.org/10.1016%2Fj.gendis.2020.11.010)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34522704)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXisVGktr3P)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=NADPH%20debt%20drives%20redox%20bankruptcy%3A%20SLC7A11%2FxCT-mediated%20cystine%20uptake%20as%20a%20double-edged%20sword%20in%20cellular%20redox%20regulation&journal=Genes%20Dis.&doi=10.1016%2Fj.gendis.2020.11.010&volume=8&pages=731-745&publication_year=2021&author=Liu%2CX) 
  1. Heit, B. S. et al. Tonic extracellular glutamate and ischaemia. glutamate antiporter Syst. x(c.) (-) regulates anoxic depolarization hippocampus. J. Physiol. 601, 607–629 (2023).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XjtVWks7nI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Tonic%20extracellular%20glutamate%20and%20ischaemia&journal=glutamate%20antiporter%20Syst.%20x%28c.%29%20%28-%29%20regulates%20anoxic%20depolarization%20hippocampus.%20J.%20Physiol.&volume=601&pages=607-629&publication_year=2023&author=Heit%2CBS) 
  1. Wang, L. et al. Nrf2 regulates oxidative stress and its role in cerebral ischemic stroke. Antioxidants 11, 2377 (2022).
  1. Dodson, M., Castro-Portuguez, R. & Zhang, D. D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23, 101107 (2019).
[Article](https://doi.org/10.1016%2Fj.redox.2019.101107)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30692038)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6859567)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhvFeks7g%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=NRF2%20plays%20a%20critical%20role%20in%20mitigating%20lipid%20peroxidation%20and%20ferroptosis&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2019.101107&volume=23&publication_year=2019&author=Dodson%2CM&author=Castro-Portuguez%2CR&author=Zhang%2CDD) 
  1. Shih, A. Y., Li, P. & Murphy, T. H. A small-molecule-inducible Nrf2-mediated antioxidant response provides effective prophylaxis against cerebral ischemia in vivo. J. Neurosci. 25, 10321–10335 (2005).
[Article](https://doi.org/10.1523%2FJNEUROSCI.4014-05.2005)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16267240)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6725780)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXht1Wqt7%2FF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20small-molecule-inducible%20Nrf2-mediated%20antioxidant%20response%20provides%20effective%20prophylaxis%20against%20cerebral%20ischemia%20in%20vivo&journal=J.%20Neurosci.&doi=10.1523%2FJNEUROSCI.4014-05.2005&volume=25&pages=10321-10335&publication_year=2005&author=Shih%2CAY&author=Li%2CP&author=Murphy%2CTH) 
  1. Zhang, J. et al. Micro ribonucleic acid 27a aggravates ferroptosis during early ischemic stroke of rats through nuclear factor erythroid-2-related factor 2. Neuroscience 504, 10–20 (2022).
[Article](https://doi.org/10.1016%2Fj.neuroscience.2022.09.014)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36180007)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XisFKgsL7O)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Micro%20ribonucleic%20acid%2027a%20aggravates%20ferroptosis%20during%20early%20ischemic%20stroke%20of%20rats%20through%20nuclear%20factor%20erythroid-2-related%20factor%202&journal=Neuroscience&doi=10.1016%2Fj.neuroscience.2022.09.014&volume=504&pages=10-20&publication_year=2022&author=Zhang%2CJ) 
  1. Chen, Y. et al. Srs11-92, a ferrostatin-1 analog, improves oxidative stress and neuroinflammation via Nrf2 signal following cerebral ischemia/reperfusion injury. CNS Neurosci. Ther. 29, 1667–1677 (2023).
[Article](https://doi.org/10.1111%2Fcns.14130)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36852441)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10173707)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXkvVOhtb0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Srs11-92%2C%20a%20ferrostatin-1%20analog%2C%20improves%20oxidative%20stress%20and%20neuroinflammation%20via%20Nrf2%20signal%20following%20cerebral%20ischemia%2Freperfusion%20injury&journal=CNS%20Neurosci.%20Ther.&doi=10.1111%2Fcns.14130&volume=29&pages=1667-1677&publication_year=2023&author=Chen%2CY) 
  1. Gou, Z. et al. Melatonin improves hypoxic-ischemic brain damage through the Akt/Nrf2/Gpx4 signaling pathway. Brain Res. Bull. 163, 40–48 (2020).
[Article](https://doi.org/10.1016%2Fj.brainresbull.2020.07.011)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32679060)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsVWqt7bM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Melatonin%20improves%20hypoxic-ischemic%20brain%20damage%20through%20the%20Akt%2FNrf2%2FGpx4%20signaling%20pathway&journal=Brain%20Res.%20Bull.&doi=10.1016%2Fj.brainresbull.2020.07.011&volume=163&pages=40-48&publication_year=2020&author=Gou%2CZ) 
  1. Kloska, A., Malinowska, M., Gabig-Ciminska, M. & Jakobkiewicz-Banecka, J. Lipids and lipid mediators associated with the risk and pathology of ischemic stroke. Int. J. Mol. Sci. 21, 3618 (2020).
  1. Jin, G. et al. Protecting against cerebrovascular injury: contributions of 12/15-lipoxygenase to edema formation after transient focal ischemia. Stroke 39, 2538–2543 (2008).
[Article](https://doi.org/10.1161%2FSTROKEAHA.108.514927)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18635843)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2754072)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXpvFGntbk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Protecting%20against%20cerebrovascular%20injury%3A%20contributions%20of%2012%2F15-lipoxygenase%20to%20edema%20formation%20after%20transient%20focal%20ischemia&journal=Stroke&doi=10.1161%2FSTROKEAHA.108.514927&volume=39&pages=2538-2543&publication_year=2008&author=Jin%2CG) 
  1. van Leyen, K. et al. Baicalein and 12/15-lipoxygenase in the ischemic brain. Stroke 37, 3014–3018 (2006).
[Article](https://doi.org/10.1161%2F01.STR.0000249004.25444.a5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17053180)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Baicalein%20and%2012%2F15-lipoxygenase%20in%20the%20ischemic%20brain&journal=Stroke&doi=10.1161%2F01.STR.0000249004.25444.a5&volume=37&pages=3014-3018&publication_year=2006&author=Leyen%2CK) 
  1. Cheng, G. et al. Effects of ML351 and tissue plasminogen activator combination therapy in a rat model of focal embolic stroke. J. Neurochem. 157, 586–598 (2021).
[Article](https://doi.org/10.1111%2Fjnc.15308)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33481248)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXjtV2qsLw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effects%20of%20ML351%20and%20tissue%20plasminogen%20activator%20combination%20therapy%20in%20a%20rat%20model%20of%20focal%20embolic%20stroke&journal=J.%20Neurochem.&doi=10.1111%2Fjnc.15308&volume=157&pages=586-598&publication_year=2021&author=Cheng%2CG) 
  1. Karatas, H., Eun Jung, J., Lo, E. H. & van Leyen, K. Inhibiting 12/15-lipoxygenase to treat acute stroke in permanent and tPA induced thrombolysis models. Brain Res. 1678, 123–128 (2018).
[Article](https://doi.org/10.1016%2Fj.brainres.2017.10.024)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29079502)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhsleltbrN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibiting%2012%2F15-lipoxygenase%20to%20treat%20acute%20stroke%20in%20permanent%20and%20tPA%20induced%20thrombolysis%20models&journal=Brain%20Res.&doi=10.1016%2Fj.brainres.2017.10.024&volume=1678&pages=123-128&publication_year=2018&author=Karatas%2CH&author=Eun%20Jung%2CJ&author=Lo%2CEH&author=Leyen%2CK) 
  1. Zhao, J., Wu, Y., Liang, S. & Piao, X. Activation of SSAT1/ALOX15 axis aggravates cerebral ischemia/reperfusion injury via triggering neuronal ferroptosis. Neuroscience 485, 78–90 (2022).
[Article](https://doi.org/10.1016%2Fj.neuroscience.2022.01.017)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35090880)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XisFOlsL4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Activation%20of%20SSAT1%2FALOX15%20axis%20aggravates%20cerebral%20ischemia%2Freperfusion%20injury%20via%20triggering%20neuronal%20ferroptosis&journal=Neuroscience&doi=10.1016%2Fj.neuroscience.2022.01.017&volume=485&pages=78-90&publication_year=2022&author=Zhao%2CJ&author=Wu%2CY&author=Liang%2CS&author=Piao%2CX) 
  1. Cui, Y. et al. ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav. Immun. 93, 312–321 (2021).
[Article](https://doi.org/10.1016%2Fj.bbi.2021.01.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33444733)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXks1Cnu7Y%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ACSL4%20exacerbates%20ischemic%20stroke%20by%20promoting%20ferroptosis-induced%20brain%20injury%20and%20neuroinflammation&journal=Brain%20Behav.%20Immun.&doi=10.1016%2Fj.bbi.2021.01.003&volume=93&pages=312-321&publication_year=2021&author=Cui%2CY) 
  1. Tuo, Q. Z. et al. Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal. Transduct. Target Ther. 7, 59 (2022).
[Article](https://doi.org/10.1038%2Fs41392-022-00917-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35197442)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8866433)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XnsFeqsLs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Thrombin%20induces%20ACSL4-dependent%20ferroptosis%20during%20cerebral%20ischemia%2Freperfusion&journal=Signal.%20Transduct.%20Target%20Ther.&doi=10.1038%2Fs41392-022-00917-z&volume=7&publication_year=2022&author=Tuo%2CQZ) 
  1. Mao, R. & Liu, H. Depletion of mmu_circ_0001751 (circular RNA Carm1) protects against acute cerebral infarction injuries by binding with microRNA-3098-3p to regulate acyl-CoA synthetase long-chain family member 4. Bioengineered 13, 4063–4075 (2022).
[Article](https://doi.org/10.1080%2F21655979.2022.2032971)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35114894)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8974190)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XjtVWqsrY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Depletion%20of%20mmu_circ_0001751%20%28circular%20RNA%20Carm1%29%20protects%20against%20acute%20cerebral%20infarction%20injuries%20by%20binding%20with%20microRNA-3098-3p%20to%20regulate%20acyl-CoA%20synthetase%20long-chain%20family%20member%204&journal=Bioengineered&doi=10.1080%2F21655979.2022.2032971&volume=13&pages=4063-4075&publication_year=2022&author=Mao%2CR&author=Liu%2CH) 
  1. Ko, G. et al. Salvia miltiorrhiza alleviates memory deficit induced by ischemic brain injury in a transient mcao mouse model by inhibiting ferroptosis. Antioxidants 12, 785 (2023).
  1. Jin, Z. L. et al. Ring finger protein 146-mediated long-chain fatty-acid-coenzyme a ligase 4 ubiquitination regulates ferroptosis-induced neuronal damage in ischemic stroke. Neuroscience 529, 148–161 (2023).
[Article](https://doi.org/10.1016%2Fj.neuroscience.2023.08.007)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37591333)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslCnsbnO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ring%20finger%20protein%20146-mediated%20long-chain%20fatty-acid-coenzyme%20a%20ligase%204%20ubiquitination%20regulates%20ferroptosis-induced%20neuronal%20damage%20in%20ischemic%20stroke&journal=Neuroscience&doi=10.1016%2Fj.neuroscience.2023.08.007&volume=529&pages=148-161&publication_year=2023&author=Jin%2CZL) 
  1. Li, M. et al. Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis. Chem. Biol. Interact. 366, 110137 (2022).
[Article](https://doi.org/10.1016%2Fj.cbi.2022.110137)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36055377)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XitlKlsbzF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Baicalein%20ameliorates%20cerebral%20ischemia-reperfusion%20injury%20by%20inhibiting%20ferroptosis%20via%20regulating%20GPX4%2FACSL4%2FACSL3%20axis&journal=Chem.%20Biol.%20Interact.&doi=10.1016%2Fj.cbi.2022.110137&volume=366&publication_year=2022&author=Li%2CM) 
  1. Sun, Y. et al. Melatonin alleviates ischemic stroke by inhibiting ferroptosis through the CYP1B1/ACSL4 pathway. Environ. Toxicol. 39, 2623–2633 (2024).
[Article](https://doi.org/10.1002%2Ftox.24136)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38205686)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXps1altQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Melatonin%20alleviates%20ischemic%20stroke%20by%20inhibiting%20ferroptosis%20through%20the%20CYP1B1%2FACSL4%20pathway&journal=Environ.%20Toxicol.&doi=10.1002%2Ftox.24136&volume=39&pages=2623-2633&publication_year=2024&author=Sun%2CY) 
  1. Sun, J. et al. Ecdysterone improves oxidative damage induced by acute ischemic stroke via inhibiting ferroptosis in neurons through ACSL4. J. Ethnopharmacol. 331, 118204 (2024).
[Article](https://doi.org/10.1016%2Fj.jep.2024.118204)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38679397)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhtVejs7%2FO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ecdysterone%20improves%20oxidative%20damage%20induced%20by%20acute%20ischemic%20stroke%20via%20inhibiting%20ferroptosis%20in%20neurons%20through%20ACSL4&journal=J.%20Ethnopharmacol.&doi=10.1016%2Fj.jep.2024.118204&volume=331&publication_year=2024&author=Sun%2CJ) 
  1. Sun, M. et al. Cottonseed oil alleviates ischemic stroke injury by inhibiting ferroptosis. Brain Behav. 13, e3179 (2023).
[Article](https://doi.org/10.1002%2Fbrb3.3179)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37480159)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10570467)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsFygtLvE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cottonseed%20oil%20alleviates%20ischemic%20stroke%20injury%20by%20inhibiting%20ferroptosis&journal=Brain%20Behav.&doi=10.1002%2Fbrb3.3179&volume=13&publication_year=2023&author=Sun%2CM) 
  1. Jin, Z. et al. Astragaloside IV alleviates neuronal ferroptosis in ischemic stroke by regulating fat mass and obesity-associated-N6-methyladenosine-acyl-CoA synthetase long-chain family member 4 axis. J. Neurochem 166, 328–345 (2023).
[Article](https://doi.org/10.1111%2Fjnc.15871)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37300304)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht1altLvM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Astragaloside%20IV%20alleviates%20neuronal%20ferroptosis%20in%20ischemic%20stroke%20by%20regulating%20fat%20mass%20and%20obesity-associated-N6-methyladenosine-acyl-CoA%20synthetase%20long-chain%20family%20member%204%20axis&journal=J.%20Neurochem&doi=10.1111%2Fjnc.15871&volume=166&pages=328-345&publication_year=2023&author=Jin%2CZ) 
  1. Li, X. N. et al. Caffeic acid alleviates cerebral ischemic injury in rats by resisting ferroptosis via Nrf2 signaling pathway. Acta Pharm. Sin. 45, 248–267 (2024).
[Article](https://doi.org/10.1038%2Fs41401-023-01177-5)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitFejsLzL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Caffeic%20acid%20alleviates%20cerebral%20ischemic%20injury%20in%20rats%20by%20resisting%20ferroptosis%20via%20Nrf2%20signaling%20pathway&journal=Acta%20Pharm.%20Sin.&doi=10.1038%2Fs41401-023-01177-5&volume=45&pages=248-267&publication_year=2024&author=Li%2CXN) 
  1. Hu, Q. et al. beta-Caryophyllene suppresses ferroptosis induced by cerebral ischemia reperfusion via activation of the NRF2/HO-1 signaling pathway in MCAO/R rats. Phytomedicine 102, 154112 (2022).
[Article](https://doi.org/10.1016%2Fj.phymed.2022.154112)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35550220)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhvVaktL%2FL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=beta-Caryophyllene%20suppresses%20ferroptosis%20induced%20by%20cerebral%20ischemia%20reperfusion%20via%20activation%20of%20the%20NRF2%2FHO-1%20signaling%20pathway%20in%20MCAO%2FR%20rats&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2022.154112&volume=102&publication_year=2022&author=Hu%2CQ) 
  1. Wu, C. et al. 15, 16-Dihydrotanshinone I protects against ischemic stroke by inhibiting ferroptosis via the activation of nuclear factor erythroid 2-related factor 2. Phytomedicine 114, 154790 (2023).
[Article](https://doi.org/10.1016%2Fj.phymed.2023.154790)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37028247)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXntl2ht74%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=15%2C%2016-Dihydrotanshinone%20I%20protects%20against%20ischemic%20stroke%20by%20inhibiting%20ferroptosis%20via%20the%20activation%20of%20nuclear%20factor%20erythroid%202-related%20factor%202&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2023.154790&volume=114&publication_year=2023&author=Wu%2CC) 
  1. Gao, J. et al. Icariside II preconditioning evokes robust neuroprotection against ischaemic stroke, by targeting Nrf2 and the OXPHOS/NF-kappaB/ferroptosis pathway. Br. J. Pharm. 180, 308–329 (2023).
[Article](https://doi.org/10.1111%2Fbph.15961)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XislSgsrzF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Icariside%20II%20preconditioning%20evokes%20robust%20neuroprotection%20against%20ischaemic%20stroke%2C%20by%20targeting%20Nrf2%20and%20the%20OXPHOS%2FNF-kappaB%2Fferroptosis%20pathway&journal=Br.%20J.%20Pharm.&doi=10.1111%2Fbph.15961&volume=180&pages=308-329&publication_year=2023&author=Gao%2CJ) 
  1. Fu, C. et al. Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J. Ethnopharmacol. 289, 115021 (2022).
[Article](https://doi.org/10.1016%2Fj.jep.2022.115021)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35091012)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xht1WhsbjF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Rehmannioside%20A%20improves%20cognitive%20impairment%20and%20alleviates%20ferroptosis%20via%20activating%20PI3K%2FAKT%2FNrf2%20and%20SLC7A11%2FGPX4%20signaling%20pathway%20after%20ischemia&journal=J.%20Ethnopharmacol.&doi=10.1016%2Fj.jep.2022.115021&volume=289&publication_year=2022&author=Fu%2CC) 
  1. Yuan, Y. et al. Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules 11, 3618 (2021).
  1. Liu, H. et al. Rhein attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through NRF2/SLC7A11/GPX4 pathway. Exp. Neurol. 369, 114541 (2023).
[Article](https://doi.org/10.1016%2Fj.expneurol.2023.114541)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37714424)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFynsrbJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Rhein%20attenuates%20cerebral%20ischemia-reperfusion%20injury%20via%20inhibition%20of%20ferroptosis%20through%20NRF2%2FSLC7A11%2FGPX4%20pathway&journal=Exp.%20Neurol.&doi=10.1016%2Fj.expneurol.2023.114541&volume=369&publication_year=2023&author=Liu%2CH) 
  1. Liu, Y. et al. Loureirin C inhibits ferroptosis after cerebral ischemia reperfusion through regulation of the Nrf2 pathway in mice. Phytomedicine 113, 154729 (2023).
[Article](https://doi.org/10.1016%2Fj.phymed.2023.154729)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36878093)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXks1Cgtrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Loureirin%20C%20inhibits%20ferroptosis%20after%20cerebral%20ischemia%20reperfusion%20through%20regulation%20of%20the%20Nrf2%20pathway%20in%20mice&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2023.154729&volume=113&publication_year=2023&author=Liu%2CY) 
  1. Peng, C. et al. Quercetin attenuates cerebral ischemic injury by inhibiting ferroptosis via Nrf2/HO-1 signaling pathway. Eur. J. Pharm. 963, 176264 (2024).
[Article](https://doi.org/10.1016%2Fj.ejphar.2023.176264)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXis1OlurvP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Quercetin%20attenuates%20cerebral%20ischemic%20injury%20by%20inhibiting%20ferroptosis%20via%20Nrf2%2FHO-1%20signaling%20pathway&journal=Eur.%20J.%20Pharm.&doi=10.1016%2Fj.ejphar.2023.176264&volume=963&publication_year=2024&author=Peng%2CC) 
  1. Mi, Y. et al. Kellerin alleviates cerebral ischemic injury by inhibiting ferroptosis via targeting Akt-mediated transcriptional activation of Nrf2. Phytomedicine 128, 155406 (2024).
[Article](https://doi.org/10.1016%2Fj.phymed.2024.155406)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38520834)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXps1Kmtbc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Kellerin%20alleviates%20cerebral%20ischemic%20injury%20by%20inhibiting%20ferroptosis%20via%20targeting%20Akt-mediated%20transcriptional%20activation%20of%20Nrf2&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2024.155406&volume=128&publication_year=2024&author=Mi%2CY) 
  1. Bai, X. et al. Angong Niuhuang Wan inhibit ferroptosis on ischemic and hemorrhagic stroke by activating PPARgamma/AKT/GPX4 pathway. J. Ethnopharmacol. 321, 117438 (2024).
[Article](https://doi.org/10.1016%2Fj.jep.2023.117438)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37984544)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXis1ShtLjL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Angong%20Niuhuang%20Wan%20inhibit%20ferroptosis%20on%20ischemic%20and%20hemorrhagic%20stroke%20by%20activating%20PPARgamma%2FAKT%2FGPX4%20pathway&journal=J.%20Ethnopharmacol.&doi=10.1016%2Fj.jep.2023.117438&volume=321&publication_year=2024&author=Bai%2CX) 
  1. Zhan, S. et al. SATB1/SLC7A11/HO-1 axis ameliorates ferroptosis in neuron cells after ischemic stroke by danhong injection. Mol. Neurobiol. 60, 413–427 (2023).
[Article](https://link.springer.com/doi/10.1007/s12035-022-03075-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36274077)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XislSlurjM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=SATB1%2FSLC7A11%2FHO-1%20axis%20ameliorates%20ferroptosis%20in%20neuron%20cells%20after%20ischemic%20stroke%20by%20danhong%20injection&journal=Mol.%20Neurobiol.&doi=10.1007%2Fs12035-022-03075-z&volume=60&pages=413-427&publication_year=2023&author=Zhan%2CS) 
  1. Liu, C. et al. Danlou tablet attenuates ischemic stroke injury and blood‒brain barrier damage by inhibiting ferroptosis. J. Ethnopharmacol. 322, 117657 (2024).
[Article](https://doi.org/10.1016%2Fj.jep.2023.117657)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38145861)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXot1Oqtg%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Danlou%20tablet%20attenuates%20ischemic%20stroke%20injury%20and%20blood%E2%80%92brain%20barrier%20damage%20by%20inhibiting%20ferroptosis&journal=J.%20Ethnopharmacol.&doi=10.1016%2Fj.jep.2023.117657&volume=322&publication_year=2024&author=Liu%2CC) 
  1. Liu, T. et al. Novel synergistic mechanism of 11-keto-beta-boswellic acid and Z-Guggulsterone on ischemic stroke revealed by single-cell transcriptomics. Pharm. Res. 193, 106803 (2023).
[Article](https://doi.org/10.1016%2Fj.phrs.2023.106803)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht1yqtLrO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Novel%20synergistic%20mechanism%20of%2011-keto-beta-boswellic%20acid%20and%20Z-Guggulsterone%20on%20ischemic%20stroke%20revealed%20by%20single-cell%20transcriptomics&journal=Pharm.%20Res.&doi=10.1016%2Fj.phrs.2023.106803&volume=193&publication_year=2023&author=Liu%2CT) 
  1. Wang, G. L. et al. Electroacupuncture inhibits ferroptosis induced by cerebral ischemiareperfusion. Curr. Neurovasc. Res. 20, 346–353 (2023).
[Article](https://doi.org/10.2174%2F1567202620666230623153728)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37357521)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Electroacupuncture%20inhibits%20ferroptosis%20induced%20by%20cerebral%20ischemiareperfusion&journal=Curr.%20Neurovasc.%20Res.&doi=10.2174%2F1567202620666230623153728&volume=20&pages=346-353&publication_year=2023&author=Wang%2CGL) 
  1. Huang, L. Y. et al. Remote ischemic postconditioning-mediated neuroprotection against stroke by promoting ketone body-induced ferroptosis inhibition. ACS Chem. Neurosci. 15, 2223–2232 (2024).
[Article](https://doi.org/10.1021%2Facschemneuro.4c00014)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38634698)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXosVCjtb0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Remote%20ischemic%20postconditioning-mediated%20neuroprotection%20against%20stroke%20by%20promoting%20ketone%20body-induced%20ferroptosis%20inhibition&journal=ACS%20Chem.%20Neurosci.&doi=10.1021%2Facschemneuro.4c00014&volume=15&pages=2223-2232&publication_year=2024&author=Huang%2CLY) 
  1. Wang, Y. et al. Anti-CHAC1 exosomes for nose-to-brain delivery of miR-760-3p in cerebral ischemia/reperfusion injury mice inhibiting neuron ferroptosis. J. Nanobiotechnol. 21, 109 (2023).
[Article](https://link.springer.com/doi/10.1186/s12951-023-01862-x)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Anti-CHAC1%20exosomes%20for%20nose-to-brain%20delivery%20of%20miR-760-3p%20in%20cerebral%20ischemia%2Freperfusion%20injury%20mice%20inhibiting%20neuron%20ferroptosis&journal=J.%20Nanobiotechnol.&doi=10.1186%2Fs12951-023-01862-x&volume=21&publication_year=2023&author=Wang%2CY) 
  1. Hong, T. et al. Exosomal circBBS2 inhibits ferroptosis by targeting miR-494 to activate SLC7A11 signaling in ischemic stroke. FASEB J. 37, e23152 (2023).
[Article](https://doi.org/10.1096%2Ffj.202300317RRR)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37603538)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvVWrt7rO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Exosomal%20circBBS2%20inhibits%20ferroptosis%20by%20targeting%20miR-494%20to%20activate%20SLC7A11%20signaling%20in%20ischemic%20stroke&journal=FASEB%20J.&doi=10.1096%2Ffj.202300317RRR&volume=37&publication_year=2023&author=Hong%2CT) 
  1. Ali, A. et al. Effect of exercise interventions on health-related quality of life after stroke and transient ischemic attack: a systematic review and meta-analysis. Stroke 52, 2445–2455 (2021).
[Article](https://doi.org/10.1161%2FSTROKEAHA.120.032979)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34039033)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effect%20of%20exercise%20interventions%20on%20health-related%20quality%20of%20life%20after%20stroke%20and%20transient%20ischemic%20attack%3A%20a%20systematic%20review%20and%20meta-analysis&journal=Stroke&doi=10.1161%2FSTROKEAHA.120.032979&volume=52&pages=2445-2455&publication_year=2021&author=Ali%2CA) 
  1. Abdelmoez, A. M. et al. Comparative profiling of skeletal muscle models reveals heterogeneity of transcriptome and metabolism. Am. J. Physiol. Cell Physiol. 318, C615–C626 (2020).
[Article](https://doi.org/10.1152%2Fajpcell.00540.2019)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31825657)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Comparative%20profiling%20of%20skeletal%20muscle%20models%20reveals%20heterogeneity%20of%20transcriptome%20and%20metabolism&journal=Am.%20J.%20Physiol.%20Cell%20Physiol.&doi=10.1152%2Fajpcell.00540.2019&volume=318&pages=C615-C626&publication_year=2020&author=Abdelmoez%2CAM) 
  1. Huang, M. et al. Preconditioning exercise inhibits neuron ferroptosis and ameliorates brain ischemia damage by skeletal muscle-derived exosomes via regulating miR-484/ACSL4 axis. Antioxid. Redox Signal. https://doi.org/10.1089/ars.2023.0492 (2024).
  1. Smith, P. D. et al. The evolution of chemokine release supports a bimodal mechanism of spinal cord ischemia and reperfusion injury. Circulation 126, S110–S117 (2012).
[Article](https://doi.org/10.1161%2FCIRCULATIONAHA.111.080275)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22965970)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhtlCitbnO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20evolution%20of%20chemokine%20release%20supports%20a%20bimodal%20mechanism%20of%20spinal%20cord%20ischemia%20and%20reperfusion%20injury&journal=Circulation&doi=10.1161%2FCIRCULATIONAHA.111.080275&volume=126&pages=S110-S117&publication_year=2012&author=Smith%2CPD) 
  1. Liu, S. et al. Ferrostatin-1 improves neurological impairment induced by ischemia/reperfusion injury in the spinal cord through ERK1/2/SP1/GPX4. Exp. Neurol. 373, 114659 (2024).
[Article](https://doi.org/10.1016%2Fj.expneurol.2023.114659)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38141803)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhsVSrtA%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferrostatin-1%20improves%20neurological%20impairment%20induced%20by%20ischemia%2Freperfusion%20injury%20in%20the%20spinal%20cord%20through%20ERK1%2F2%2FSP1%2FGPX4&journal=Exp.%20Neurol.&doi=10.1016%2Fj.expneurol.2023.114659&volume=373&publication_year=2024&author=Liu%2CS) 
  1. Rong, Y. et al. USP11 regulates autophagy-dependent ferroptosis after spinal cord ischemia-reperfusion injury by deubiquitinating Beclin 1. Cell Death Differ. 29, 1164–1175 (2022).
[Article](https://doi.org/10.1038%2Fs41418-021-00907-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34839355)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XntlSrur8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=USP11%20regulates%20autophagy-dependent%20ferroptosis%20after%20spinal%20cord%20ischemia-reperfusion%20injury%20by%20deubiquitinating%20Beclin%201&journal=Cell%20Death%20Differ.&doi=10.1038%2Fs41418-021-00907-8&volume=29&pages=1164-1175&publication_year=2022&author=Rong%2CY) 
  1. Kania, A. & Klein, R. Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol. 17, 240–256 (2016).
[Article](https://doi.org/10.1038%2Fnrm.2015.16)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26790531)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhtFOrsrg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mechanisms%20of%20ephrin-Eph%20signalling%20in%20development%2C%20physiology%20and%20disease&journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&doi=10.1038%2Fnrm.2015.16&volume=17&pages=240-256&publication_year=2016&author=Kania%2CA&author=Klein%2CR) 
  1. Dong, Y. et al. Eph receptor A4 regulates motor neuron ferroptosis in spinal cord ischemia/reperfusion injury in rats. Neural Regen. Res. 18, 2219–2228 (2023).
[Article](https://doi.org/10.4103%2F1673-5374.369118)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37056141)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10328289)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXjvV2gtr0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Eph%20receptor%20A4%20regulates%20motor%20neuron%20ferroptosis%20in%20spinal%20cord%20ischemia%2Freperfusion%20injury%20in%20rats&journal=Neural%20Regen.%20Res.&doi=10.4103%2F1673-5374.369118&volume=18&pages=2219-2228&publication_year=2023&author=Dong%2CY) 
  1. Guo, L., Zhang, D., Ren, X. & Liu, D. SYVN1 attenuates ferroptosis and alleviates spinal cord ischemia-reperfusion injury in rats by regulating the HMGB1/NRF2/HO-1 axis. Int. Immunopharmacol. 123, 110802 (2023).
[Article](https://doi.org/10.1016%2Fj.intimp.2023.110802)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37591122)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslSmtb3O)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=SYVN1%20attenuates%20ferroptosis%20and%20alleviates%20spinal%20cord%20ischemia-reperfusion%20injury%20in%20rats%20by%20regulating%20the%20HMGB1%2FNRF2%2FHO-1%20axis&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2023.110802&volume=123&publication_year=2023&author=Guo%2CL&author=Zhang%2CD&author=Ren%2CX&author=Liu%2CD) 
  1. Xiang, Q. et al. Regulated cell death in myocardial ischemia-reperfusion injury. Trends Endocrinol. Metab. 35, 219–234 (2024).
[Article](https://doi.org/10.1016%2Fj.tem.2023.10.010)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37981501)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitlGhsbfM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulated%20cell%20death%20in%20myocardial%20ischemia-reperfusion%20injury&journal=Trends%20Endocrinol.%20Metab.&doi=10.1016%2Fj.tem.2023.10.010&volume=35&pages=219-234&publication_year=2024&author=Xiang%2CQ) 
  1. Chang, H. C. et al. Reduction in mitochondrial iron alleviates cardiac damage during injury. EMBO Mol. Med. 8, 247–267 (2016).
[Article](https://doi.org/10.15252%2Femmm.201505748)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26896449)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4772952)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xislegtb8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Reduction%20in%20mitochondrial%20iron%20alleviates%20cardiac%20damage%20during%20injury&journal=EMBO%20Mol.%20Med.&doi=10.15252%2Femmm.201505748&volume=8&pages=247-267&publication_year=2016&author=Chang%2CHC) 
  1. Ju, J. et al. Circular RNA FEACR inhibits ferroptosis and alleviates myocardial ischemia/reperfusion injury by interacting with NAMPT. J. Biomed. Sci. 30, 45 (2023).
[Article](https://link.springer.com/doi/10.1186/s12929-023-00927-1)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37370086)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10304620)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVWlu7%2FP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Circular%20RNA%20FEACR%20inhibits%20ferroptosis%20and%20alleviates%20myocardial%20ischemia%2Freperfusion%20injury%20by%20interacting%20with%20NAMPT&journal=J.%20Biomed.%20Sci.&doi=10.1186%2Fs12929-023-00927-1&volume=30&publication_year=2023&author=Ju%2CJ) 
  1. Li, W. et al. Inhibition of DNMT-1 alleviates ferroptosis through NCOA4 mediated ferritinophagy during diabetes myocardial ischemia/reperfusion injury. Cell Death Discov. 7, 267 (2021).
[Article](https://doi.org/10.1038%2Fs41420-021-00656-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34588431)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8481302)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XjtV2jsrY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20DNMT-1%20alleviates%20ferroptosis%20through%20NCOA4%20mediated%20ferritinophagy%20during%20diabetes%20myocardial%20ischemia%2Freperfusion%20injury&journal=Cell%20Death%20Discov.&doi=10.1038%2Fs41420-021-00656-0&volume=7&publication_year=2021&author=Li%2CW) 
  1. Park, T. J. et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes. Cell Death Dis. 10, 835 (2019).
[Article](https://doi.org/10.1038%2Fs41419-019-2061-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31685805)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6828761)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Quantitative%20proteomic%20analyses%20reveal%20that%20GPX4%20downregulation%20during%20myocardial%20infarction%20contributes%20to%20ferroptosis%20in%20cardiomyocytes&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-019-2061-8&volume=10&publication_year=2019&author=Park%2CTJ) 
  1. Coates, C. J., McCulloch, C., Betts, J. & Whalley, T. Echinochrome a release by red spherule cells is an iron-withholding strategy of sea urchin innate immunity. J. Innate Immun. 10, 119–130 (2018).
[Article](https://doi.org/10.1159%2F000484722)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29212075)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXlt1Kks7g%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Echinochrome%20a%20release%20by%20red%20spherule%20cells%20is%20an%20iron-withholding%20strategy%20of%20sea%20urchin%20innate%20immunity&journal=J.%20Innate%20Immun.&doi=10.1159%2F000484722&volume=10&pages=119-130&publication_year=2018&author=Coates%2CCJ&author=McCulloch%2CC&author=Betts%2CJ&author=Whalley%2CT) 
  1. Park, J. H. et al. TherApeutic cell protective role of histochrome under oxidative stress in human cardiac progenitor cells. Mar. Drugs 17, 368 (2019).
  1. Hwang, J. W. et al. Histochrome attenuates myocardial ischemia-reperfusion injury by inhibiting ferroptosis-induced cardiomyocyte death. Antioxidants 10, 1624 (2021).
  1. Cao, Y. et al. KMT2B-dependent RFK transcription activates the TNF-alpha/NOX2 pathway and enhances ferroptosis caused by myocardial ischemia-reperfusion. J. Mol. Cell Cardiol. 173, 75–91 (2022).
[Article](https://doi.org/10.1016%2Fj.yjmcc.2022.09.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36162497)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XisFyrtb3N)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=KMT2B-dependent%20RFK%20transcription%20activates%20the%20TNF-alpha%2FNOX2%20pathway%20and%20enhances%20ferroptosis%20caused%20by%20myocardial%20ischemia-reperfusion&journal=J.%20Mol.%20Cell%20Cardiol.&doi=10.1016%2Fj.yjmcc.2022.09.003&volume=173&pages=75-91&publication_year=2022&author=Cao%2CY) 
  1. Guo, J. et al. Mitochondria-derived methylmalonic acid aggravates ischemia-reperfusion injury by activating reactive oxygen species-dependent ferroptosis. Cell Commun. Signal. 22, 53 (2024).
[Article](https://link.springer.com/doi/10.1186/s12964-024-01479-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38238728)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797736)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXitFOhsrY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondria-derived%20methylmalonic%20acid%20aggravates%20ischemia-reperfusion%20injury%20by%20activating%20reactive%20oxygen%20species-dependent%20ferroptosis&journal=Cell%20Commun.%20Signal.&doi=10.1186%2Fs12964-024-01479-z&volume=22&publication_year=2024&author=Guo%2CJ) 
  1. Ichihara, G. et al. MRP1-dependent extracellular release of glutathione induces cardiomyocyte ferroptosis after ischemia-reperfusion. Circ. Res. 133, 861–876 (2023).
[Article](https://doi.org/10.1161%2FCIRCRESAHA.123.323517)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37818671)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitFyksrzL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=MRP1-dependent%20extracellular%20release%20of%20glutathione%20induces%20cardiomyocyte%20ferroptosis%20after%20ischemia-reperfusion&journal=Circ.%20Res.&doi=10.1161%2FCIRCRESAHA.123.323517&volume=133&pages=861-876&publication_year=2023&author=Ichihara%2CG) 
  1. Ma, X. H. et al. ALOX15-launched PUFA-phospholipids peroxidation increases the susceptibility of ferroptosis in ischemia-induced myocardial damage. Signal. Transduct. Target Ther. 7, 288 (2022).
[Article](https://doi.org/10.1038%2Fs41392-022-01090-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35970840)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9378747)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XitFGlsr%2FI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ALOX15-launched%20PUFA-phospholipids%20peroxidation%20increases%20the%20susceptibility%20of%20ferroptosis%20in%20ischemia-induced%20myocardial%20damage&journal=Signal.%20Transduct.%20Target%20Ther.&doi=10.1038%2Fs41392-022-01090-z&volume=7&publication_year=2022&author=Ma%2CXH) 
  1. Liu, L. et al. Deubiquitinase OTUD5 as a novel protector against 4-HNE-triggered ferroptosis in myocardial ischemia/reperfusion injury. Adv. Sci. 10, e2301852 (2023).
[Article](https://doi.org/10.1002%2Fadvs.202301852)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deubiquitinase%20OTUD5%20as%20a%20novel%20protector%20against%204-HNE-triggered%20ferroptosis%20in%20myocardial%20ischemia%2Freperfusion%20injury&journal=Adv.%20Sci.&doi=10.1002%2Fadvs.202301852&volume=10&publication_year=2023&author=Liu%2CL) 
  1. Qiu, M., Yan, W. & Liu, M. YAP facilitates NEDD4L-mediated ubiquitination and degradation of ACSL4 to alleviate ferroptosis in myocardial ischemia-reperfusion injury. Can. J. Cardiol. 39, 1712–1727 (2023).
[Article](https://doi.org/10.1016%2Fj.cjca.2023.07.030)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37541340)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=YAP%20facilitates%20NEDD4L-mediated%20ubiquitination%20and%20degradation%20of%20ACSL4%20to%20alleviate%20ferroptosis%20in%20myocardial%20ischemia-reperfusion%20injury&journal=Can.%20J.%20Cardiol.&doi=10.1016%2Fj.cjca.2023.07.030&volume=39&pages=1712-1727&publication_year=2023&author=Qiu%2CM&author=Yan%2CW&author=Liu%2CM) 
  1. Dong, L. et al. Research progress of chinese medicine in the treatment of myocardial ischemia-reperfusion injury. Am. J. Chin. Med. 51, 1–17 (2023).
[Article](https://doi.org/10.1142%2FS0192415X23500015)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36437553)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Research%20progress%20of%20chinese%20medicine%20in%20the%20treatment%20of%20myocardial%20ischemia-reperfusion%20injury&journal=Am.%20J.%20Chin.%20Med.&doi=10.1142%2FS0192415X23500015&volume=51&pages=1-17&publication_year=2023&author=Dong%2CL) 
  1. Yang, B. et al. Salidroside pretreatment alleviates ferroptosis induced by myocardial ischemia/reperfusion through mitochondrial superoxide-dependent AMPKalpha2 activation. Phytomedicine 128, 155365 (2024).
[Article](https://doi.org/10.1016%2Fj.phymed.2024.155365)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38552436)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXps1KltLc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Salidroside%20pretreatment%20alleviates%20ferroptosis%20induced%20by%20myocardial%20ischemia%2Freperfusion%20through%20mitochondrial%20superoxide-dependent%20AMPKalpha2%20activation&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2024.155365&volume=128&publication_year=2024&author=Yang%2CB) 
  1. Ishimaru, K. et al. Deferasirox targeting ferroptosis synergistically ameliorates myocardial ischemia reperfusion injury in conjunction with cyclosporine A. J. Am. Heart Assoc. 13, e031219 (2024).
[Article](https://doi.org/10.1161%2FJAHA.123.031219)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38158218)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deferasirox%20targeting%20ferroptosis%20synergistically%20ameliorates%20myocardial%20ischemia%20reperfusion%20injury%20in%20conjunction%20with%20cyclosporine%20A&journal=J.%20Am.%20Heart%20Assoc.&doi=10.1161%2FJAHA.123.031219&volume=13&publication_year=2024&author=Ishimaru%2CK) 
  1. Qian, W. et al. Cyclosporine A-loaded apoferritin alleviates myocardial ischemia-reperfusion injury by simultaneously blocking ferroptosis and apoptosis of cardiomyocytes. Acta Biomater. 160, 265–280 (2023).
[Article](https://doi.org/10.1016%2Fj.actbio.2023.02.025)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36822483)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXkt1Wiur4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cyclosporine%20A-loaded%20apoferritin%20alleviates%20myocardial%20ischemia-reperfusion%20injury%20by%20simultaneously%20blocking%20ferroptosis%20and%20apoptosis%20of%20cardiomyocytes&journal=Acta%20Biomater.&doi=10.1016%2Fj.actbio.2023.02.025&volume=160&pages=265-280&publication_year=2023&author=Qian%2CW) 
  1. Yan, J. et al. Fucoxanthin alleviated myocardial ischemia and reperfusion injury through inhibition of ferroptosis via the NRF2 signaling pathway. Food Funct. 14, 10052–10068 (2023).
[Article](https://doi.org/10.1039%2FD3FO02633G)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37861458)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitFKkt7jF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Fucoxanthin%20alleviated%20myocardial%20ischemia%20and%20reperfusion%20injury%20through%20inhibition%20of%20ferroptosis%20via%20the%20NRF2%20signaling%20pathway&journal=Food%20Funct.&doi=10.1039%2FD3FO02633G&volume=14&pages=10052-10068&publication_year=2023&author=Yan%2CJ) 
  1. Hu, T. et al. Resveratrol protects cardiomyocytes against ischemia/reperfusion-induced ferroptosis via inhibition of the VDAC1/GPX4 pathway. Eur. J. Pharm. 971, 176524 (2024).
[Article](https://doi.org/10.1016%2Fj.ejphar.2024.176524)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXns1Oltr0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Resveratrol%20protects%20cardiomyocytes%20against%20ischemia%2Freperfusion-induced%20ferroptosis%20via%20inhibition%20of%20the%20VDAC1%2FGPX4%20pathway&journal=Eur.%20J.%20Pharm.&doi=10.1016%2Fj.ejphar.2024.176524&volume=971&publication_year=2024&author=Hu%2CT) 
  1. Yang, T. et al. Galangin attenuates myocardial ischemic reperfusion-induced ferroptosis by targeting Nrf2/Gpx4 signaling pathway. Drug Des. Dev. Ther. 17, 2495–2511 (2023).
[Article](https://doi.org/10.2147%2FDDDT.S409232)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvVGru7nF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Galangin%20attenuates%20myocardial%20ischemic%20reperfusion-induced%20ferroptosis%20by%20targeting%20Nrf2%2FGpx4%20signaling%20pathway&journal=Drug%20Des.%20Dev.%20Ther.&doi=10.2147%2FDDDT.S409232&volume=17&pages=2495-2511&publication_year=2023&author=Yang%2CT) 
  1. Wang, R. et al. Kinsenoside mitigates myocardial ischemia/reperfusion-induced ferroptosis via activation of the Akt/Nrf2/HO-1 pathway. Eur. J. Pharm. 956, 175985 (2023).
[Article](https://doi.org/10.1016%2Fj.ejphar.2023.175985)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhs12nt7bJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Kinsenoside%20mitigates%20myocardial%20ischemia%2Freperfusion-induced%20ferroptosis%20via%20activation%20of%20the%20Akt%2FNrf2%2FHO-1%20pathway&journal=Eur.%20J.%20Pharm.&doi=10.1016%2Fj.ejphar.2023.175985&volume=956&publication_year=2023&author=Wang%2CR) 
  1. Ge, C. et al. Hydroxysafflor yellow a alleviates acute myocardial ischemia/reperfusion injury in mice by inhibiting ferroptosis via the activation of the HIF-1alpha/SLC7A11/GPX4 signaling pathway. Nutrients 15, 3411 (2023).
  1. Wang, I. C. et al. Baicalein and luteolin inhibit ischemia/reperfusion-induced ferroptosis in rat cardiomyocytes. Int. J. Cardiol. 375, 74–86 (2023).
[Article](https://doi.org/10.1016%2Fj.ijcard.2022.12.018)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36513286)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Baicalein%20and%20luteolin%20inhibit%20ischemia%2Freperfusion-induced%20ferroptosis%20in%20rat%20cardiomyocytes&journal=Int.%20J.%20Cardiol.&doi=10.1016%2Fj.ijcard.2022.12.018&volume=375&pages=74-86&publication_year=2023&author=Wang%2CIC) 
  1. Lin, J. H. et al. Gossypol acetic acid attenuates cardiac ischemia/reperfusion injury in rats via an antiferroptotic mechanism. Biomolecules 11, 1667 (2021).
  1. Song, Y. et al. Human umbilical cord blood-derived MSCs exosome attenuate myocardial injury by inhibiting ferroptosis in acute myocardial infarction mice. Cell Biol. Toxicol. 37, 51–64 (2021).
[Article](https://link.springer.com/doi/10.1007/s10565-020-09530-8)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32535745)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtFOrurfE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Human%20umbilical%20cord%20blood-derived%20MSCs%20exosome%20attenuate%20myocardial%20injury%20by%20inhibiting%20ferroptosis%20in%20acute%20myocardial%20infarction%20mice&journal=Cell%20Biol.%20Toxicol.&doi=10.1007%2Fs10565-020-09530-8&volume=37&pages=51-64&publication_year=2021&author=Song%2CY) 
  1. Pefanis, A., Ierino, F. L., Murphy, J. M. & Cowan, P. J. Regulated necrosis in kidney ischemia-reperfusion injury. Kidney Int. 96, 291–301 (2019).
[Article](https://doi.org/10.1016%2Fj.kint.2019.02.009)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31005270)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulated%20necrosis%20in%20kidney%20ischemia-reperfusion%20injury&journal=Kidney%20Int&doi=10.1016%2Fj.kint.2019.02.009&volume=96&pages=291-301&publication_year=2019&author=Pefanis%2CA&author=Ierino%2CFL&author=Murphy%2CJM&author=Cowan%2CPJ) 
  1. Thapa, K., Singh, T. G. & Kaur, A. Targeting ferroptosis in ischemia/reperfusion renal injury. Naunyn Schmiedebergs Arch. Pharm. 395, 1331–1341 (2022).
[Article](https://link.springer.com/doi/10.1007/s00210-022-02277-5)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XitVGgtb3J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20ferroptosis%20in%20ischemia%2Freperfusion%20renal%20injury&journal=Naunyn%20Schmiedebergs%20Arch.%20Pharm.&doi=10.1007%2Fs00210-022-02277-5&volume=395&pages=1331-1341&publication_year=2022&author=Thapa%2CK&author=Singh%2CTG&author=Kaur%2CA) 
  1. Tang, Q., Li, J., Wang, Y. & Sun, Q. Identification and verification of hub genes associated with ferroptosis in ischemia and reperfusion injury during renal transplantation. Int. Immunopharmacol. 120, 110393 (2023).
[Article](https://doi.org/10.1016%2Fj.intimp.2023.110393)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37279643)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht1Wmsr%2FK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identification%20and%20verification%20of%20hub%20genes%20associated%20with%20ferroptosis%20in%20ischemia%20and%20reperfusion%20injury%20during%20renal%20transplantation&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2023.110393&volume=120&publication_year=2023&author=Tang%2CQ&author=Li%2CJ&author=Wang%2CY&author=Sun%2CQ) 
  1. Xie, R. et al. NAT10 drives cisplatin chemoresistance by enhancing ac4C-associated DNA repair in bladder cancer. Cancer Res. 83, 1666–1683 (2023).
[Article](https://doi.org/10.1158%2F0008-5472.CAN-22-2233)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36939377)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht1yitLvN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=NAT10%20drives%20cisplatin%20chemoresistance%20by%20enhancing%20ac4C-associated%20DNA%20repair%20in%20bladder%20cancer&journal=Cancer%20Res.&doi=10.1158%2F0008-5472.CAN-22-2233&volume=83&pages=1666-1683&publication_year=2023&author=Xie%2CR) 
  1. Arango, D. et al. Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175, 1872–1886 e24 (2018).
[Article](https://doi.org/10.1016%2Fj.cell.2018.10.030)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30449621)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6295233)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXit1Wlt77K)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Acetylation%20of%20cytidine%20in%20mRNA%20promotes%20translation%20efficiency&journal=Cell&doi=10.1016%2Fj.cell.2018.10.030&volume=175&pages=1872-1886%20e24&publication_year=2018&author=Arango%2CD) 
  1. Shen, J. et al. NAT10 promotes renal ischemia-reperfusion injury via activating NCOA4-mediated ferroptosis. Heliyon 10, e24573 (2024).
[Article](https://doi.org/10.1016%2Fj.heliyon.2024.e24573)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38312597)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835180)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXitFKqsb0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=NAT10%20promotes%20renal%20ischemia-reperfusion%20injury%20via%20activating%20NCOA4-mediated%20ferroptosis&journal=Heliyon&doi=10.1016%2Fj.heliyon.2024.e24573&volume=10&publication_year=2024&author=Shen%2CJ) 
  1. Jin, L. et al. STING promotes ferroptosis through NCOA4-dependent ferritinophagy in acute kidney injury. Free Radic. Biol. Med. 208, 348–360 (2023).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2023.08.025)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37634745)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslyrtLjE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=STING%20promotes%20ferroptosis%20through%20NCOA4-dependent%20ferritinophagy%20in%20acute%20kidney%20injury&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2023.08.025&volume=208&pages=348-360&publication_year=2023&author=Jin%2CL) 
  1. Su, L. et al. Pannexin 1 mediates ferroptosis that contributes to renal ischemia/reperfusion injury. J. Biol. Chem. 294, 19395–19404 (2019).
[Article](https://doi.org/10.1074%2Fjbc.RA119.010949)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31694915)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6916502)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXjtVOit7w%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pannexin%201%20mediates%20ferroptosis%20that%20contributes%20to%20renal%20ischemia%2Freperfusion%20injury&journal=J.%20Biol.%20Chem.&doi=10.1074%2Fjbc.RA119.010949&volume=294&pages=19395-19404&publication_year=2019&author=Su%2CL) 
  1. Gong, S. et al. REST contributes to AKI-to-CKD transition through inducing ferroptosis in renal tubular epithelial cells. JCI Insight 8 (2023).
  1. Chu, L. K. et al. Autophagy of OTUD5 destabilizes GPX4 to confer ferroptosis-dependent kidney injury. Nat. Commun. 14, 8393 (2023).
[Article](https://doi.org/10.1038%2Fs41467-023-44228-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38110369)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10728081)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXis1KgtrfE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Autophagy%20of%20OTUD5%20destabilizes%20GPX4%20to%20confer%20ferroptosis-dependent%20kidney%20injury&journal=Nat.%20Commun.&doi=10.1038%2Fs41467-023-44228-5&volume=14&publication_year=2023&author=Chu%2CLK) 
  1. Ding, C. et al. miR-182-5p and miR-378a-3p regulate ferroptosis in I/R-induced renal injury. Cell Death Dis. 11, 929 (2020).
[Article](https://doi.org/10.1038%2Fs41419-020-03135-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33116120)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7595188)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitlCqurvN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=miR-182-5p%20and%20miR-378a-3p%20regulate%20ferroptosis%20in%20I%2FR-induced%20renal%20injury&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-020-03135-z&volume=11&publication_year=2020&author=Ding%2CC) 
  1. Lin, G. et al. Molecular mechanism of NR4A1/MDM2/P53 signaling pathway regulation inducing ferroptosis in renal tubular epithelial cells involved in the progression of renal ischemia-reperfusion injury. Biochim. Biophys. Acta Mol. Basis Dis. 1870, 166968 (2024).
[Article](https://doi.org/10.1016%2Fj.bbadis.2023.166968)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38008232)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXis1CqurnJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Molecular%20mechanism%20of%20NR4A1%2FMDM2%2FP53%20signaling%20pathway%20regulation%20inducing%20ferroptosis%20in%20renal%20tubular%20epithelial%20cells%20involved%20in%20the%20progression%20of%20renal%20ischemia-reperfusion%20injury&journal=Biochim.%20Biophys.%20Acta%20Mol.%20Basis%20Dis.&doi=10.1016%2Fj.bbadis.2023.166968&volume=1870&publication_year=2024&author=Lin%2CG) 
  1. Polyzos, A. A. et al. XJB-5-131-mediated improvement in physiology and behaviour of the R6/2 mouse model of Huntington’s disease is age- and sex- dependent. PLoS One 13, e0194580 (2018).
[Article](https://doi.org/10.1371%2Fjournal.pone.0194580)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29630611)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5890981)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=XJB-5-131-mediated%20improvement%20in%20physiology%20and%20behaviour%20of%20the%20R6%2F2%20mouse%20model%20of%20Huntington%E2%80%99s%20disease%20is%20age-%20and%20sex-%20dependent&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0194580&volume=13&publication_year=2018&author=Polyzos%2CAA) 
  1. Zhao, Z. et al. XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. Cell Death Dis. 11, 629 (2020).
[Article](https://doi.org/10.1038%2Fs41419-020-02871-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32796819)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7429848)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhs1yhu7%2FK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=XJB-5-131%20inhibited%20ferroptosis%20in%20tubular%20epithelial%20cells%20after%20ischemia-reperfusion%20injury&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-020-02871-6&volume=11&publication_year=2020&author=Zhao%2CZ) 
  1. Shi, L. et al. MiR-20a-5p alleviates kidney ischemia/reperfusion injury by targeting ACSL4-dependent ferroptosis. Am. J. Transpl. 23, 11–25 (2023).
[Article](https://doi.org/10.1016%2Fj.ajt.2022.09.003)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=MiR-20a-5p%20alleviates%20kidney%20ischemia%2Freperfusion%20injury%20by%20targeting%20ACSL4-dependent%20ferroptosis&journal=Am.%20J.%20Transpl.&doi=10.1016%2Fj.ajt.2022.09.003&volume=23&pages=11-25&publication_year=2023&author=Shi%2CL) 
  1. Zhao, Z. et al. Cytoplasmic HMGB1 induces renal tubular ferroptosis after ischemia/reperfusion. Int. Immunopharmacol. 116, 109757 (2023).
[Article](https://doi.org/10.1016%2Fj.intimp.2023.109757)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36731154)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitlSmu7g%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cytoplasmic%20HMGB1%20induces%20renal%20tubular%20ferroptosis%20after%20ischemia%2Freperfusion&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2023.109757&volume=116&publication_year=2023&author=Zhao%2CZ) 
  1. Wang, H. et al. Carnosine attenuates renal ischemia-reperfusion injury by inhibiting GPX4-mediated ferroptosis. Int. Immunopharmacol. 124, 110850 (2023).
[Article](https://doi.org/10.1016%2Fj.intimp.2023.110850)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37633236)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslKgs7zM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Carnosine%20attenuates%20renal%20ischemia-reperfusion%20injury%20by%20inhibiting%20GPX4-mediated%20ferroptosis&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2023.110850&volume=124&publication_year=2023&author=Wang%2CH) 
  1. Qi, Y. et al. Mitoglitazone ameliorates renal ischemia/reperfusion injury by inhibiting ferroptosis via targeting mitoNEET. Toxicol. Appl. Pharm. 465, 116440 (2023).
[Article](https://doi.org/10.1016%2Fj.taap.2023.116440)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXltV2rsrs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitoglitazone%20ameliorates%20renal%20ischemia%2Freperfusion%20injury%20by%20inhibiting%20ferroptosis%20via%20targeting%20mitoNEET&journal=Toxicol.%20Appl.%20Pharm.&doi=10.1016%2Fj.taap.2023.116440&volume=465&publication_year=2023&author=Qi%2CY) 
  1. Wang, Y. et al. Quercetin alleviates acute kidney injury by inhibiting ferroptosis. J. Adv. Res. 28, 231–243 (2021).
[Article](https://doi.org/10.1016%2Fj.jare.2020.07.007)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33364059)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhvFSjtr7F)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Quercetin%20alleviates%20acute%20kidney%20injury%20by%20inhibiting%20ferroptosis&journal=J.%20Adv.%20Res.&doi=10.1016%2Fj.jare.2020.07.007&volume=28&pages=231-243&publication_year=2021&author=Wang%2CY) 
  1. Du, Y. W. et al. Cyanidin-3-glucoside inhibits ferroptosis in renal tubular cells after ischemia/reperfusion injury via the AMPK pathway. Mol. Med. 29, 42 (2023).
[Article](https://link.springer.com/doi/10.1186/s10020-023-00642-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37013504)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10069074)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXmvFSjtLs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cyanidin-3-glucoside%20inhibits%20ferroptosis%20in%20renal%20tubular%20cells%20after%20ischemia%2Freperfusion%20injury%20via%20the%20AMPK%20pathway&journal=Mol.%20Med.&doi=10.1186%2Fs10020-023-00642-5&volume=29&publication_year=2023&author=Du%2CYW) 
  1. Ma, L. et al. Paeoniflorin alleviates ischemia/reperfusion induced acute kidney injury by inhibiting Slc7a11-mediated ferroptosis. Int. Immunopharmacol. 116, 109754 (2023).
[Article](https://doi.org/10.1016%2Fj.intimp.2023.109754)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36753983)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXis1yrurk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Paeoniflorin%20alleviates%20ischemia%2Freperfusion%20induced%20acute%20kidney%20injury%20by%20inhibiting%20Slc7a11-mediated%20ferroptosis&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2023.109754&volume=116&publication_year=2023&author=Ma%2CL) 
  1. Tang, Y. et al. Isoliquiritigenin attenuates septic acute kidney injury by regulating ferritinophagy-mediated ferroptosis. Ren. Fail 43, 1551–1560 (2021).
[Article](https://doi.org/10.1080%2F0886022X.2021.2003208)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34791966)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8604484)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhtVKgtLg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Isoliquiritigenin%20attenuates%20septic%20acute%20kidney%20injury%20by%20regulating%20ferritinophagy-mediated%20ferroptosis&journal=Ren.%20Fail&doi=10.1080%2F0886022X.2021.2003208&volume=43&pages=1551-1560&publication_year=2021&author=Tang%2CY) 
  1. Kar, F. et al. LoxBlock-1 or Curcumin attenuates liver, pancreas and cardiac ferroptosis, oxidative stress and injury in Ischemia/reperfusion-damaged rats by facilitating ACSL/GPx4 signaling. Tissue Cell 82, 102114 (2023).
[Article](https://doi.org/10.1016%2Fj.tice.2023.102114)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37210761)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhtFGltb3J)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=LoxBlock-1%20or%20Curcumin%20attenuates%20liver%2C%20pancreas%20and%20cardiac%20ferroptosis%2C%20oxidative%20stress%20and%20injury%20in%20Ischemia%2Freperfusion-damaged%20rats%20by%20facilitating%20ACSL%2FGPx4%20signaling&journal=Tissue%20Cell&doi=10.1016%2Fj.tice.2023.102114&volume=82&publication_year=2023&author=Kar%2CF) 
  1. Lu, Y., Wang, L., Zhang, M. & Chen, Z. Mesenchymal stem cell-derived small extracellular vesicles: a novel approach for kidney disease treatment. Int. J. Nanomed. 17, 3603–3618 (2022).
[Article](https://doi.org/10.2147%2FIJN.S372254)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mesenchymal%20stem%20cell-derived%20small%20extracellular%20vesicles%3A%20a%20novel%20approach%20for%20kidney%20disease%20treatment&journal=Int.%20J.%20Nanomed.&doi=10.2147%2FIJN.S372254&volume=17&pages=3603-3618&publication_year=2022&author=Lu%2CY&author=Wang%2CL&author=Zhang%2CM&author=Chen%2CZ) 
  1. Eirin, A. & Lerman, L. O. Mesenchymal stem/stromal cell-derived extracellular vesicles for chronic kidney disease: are we there yet? Hypertension 78, 261–269 (2021).
[Article](https://doi.org/10.1161%2FHYPERTENSIONAHA.121.14596)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34176287)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhsF2ju7rI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mesenchymal%20stem%2Fstromal%20cell-derived%20extracellular%20vesicles%20for%20chronic%20kidney%20disease%3A%20are%20we%20there%20yet%3F&journal=Hypertension&doi=10.1161%2FHYPERTENSIONAHA.121.14596&volume=78&pages=261-269&publication_year=2021&author=Eirin%2CA&author=Lerman%2CLO) 
  1. Sun, Z., Wu, J., Bi, Q. & Wang, W. Exosomal lncRNA TUG1 derived from human urine-derived stem cells attenuates renal ischemia/reperfusion injury by interacting with SRSF1 to regulate ASCL4-mediated ferroptosis. Stem Cell Res. Ther. 13, 297 (2022).
[Article](https://link.springer.com/doi/10.1186/s13287-022-02986-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35841017)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9284726)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Exosomal%20lncRNA%20TUG1%20derived%20from%20human%20urine-derived%20stem%20cells%20attenuates%20renal%20ischemia%2Freperfusion%20injury%20by%20interacting%20with%20SRSF1%20to%20regulate%20ASCL4-mediated%20ferroptosis&journal=Stem%20Cell%20Res.%20Ther.&doi=10.1186%2Fs13287-022-02986-x&volume=13&publication_year=2022&author=Sun%2CZ&author=Wu%2CJ&author=Bi%2CQ&author=Wang%2CW) 
  1. Jia, Y. et al. Metformin protects against intestinal ischemia-reperfusion injury and cell pyroptosis via TXNIP-NLRP3-GSDMD pathway. Redox Biol. 32, 101534 (2020).
[Article](https://doi.org/10.1016%2Fj.redox.2020.101534)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32330868)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7178548)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXotFelt7w%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metformin%20protects%20against%20intestinal%20ischemia-reperfusion%20injury%20and%20cell%20pyroptosis%20via%20TXNIP-NLRP3-GSDMD%20pathway&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2020.101534&volume=32&publication_year=2020&author=Jia%2CY) 
  1. Zhu, L. et al. Integrated analysis of ferroptosis and immunity-related genes associated with intestinal ischemia/reperfusion injury. J. Inflamm. Res. 15, 2397–2411 (2022).
[Article](https://doi.org/10.2147%2FJIR.S351990)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35444445)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9015787)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xht1OktrvE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Integrated%20analysis%20of%20ferroptosis%20and%20immunity-related%20genes%20associated%20with%20intestinal%20ischemia%2Freperfusion%20injury&journal=J.%20Inflamm.%20Res.&doi=10.2147%2FJIR.S351990&volume=15&pages=2397-2411&publication_year=2022&author=Zhu%2CL) 
  1. Li, Y. et al. Ischemia-induced ACSL4 activation contributes to ferroptosis-mediated tissue injury in intestinal ischemia/reperfusion. Cell Death Differ. 26, 2284–2299 (2019).
[Article](https://doi.org/10.1038%2Fs41418-019-0299-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30737476)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6889315)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhtFSmsLjJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ischemia-induced%20ACSL4%20activation%20contributes%20to%20ferroptosis-mediated%20tissue%20injury%20in%20intestinal%20ischemia%2Freperfusion&journal=Cell%20Death%20Differ.&doi=10.1038%2Fs41418-019-0299-4&volume=26&pages=2284-2299&publication_year=2019&author=Li%2CY) 
  1. Li, K., Wang, A., Diao, Y. & Fan, S. Oxidative medicine and cellular longevity the role and mechanism of NCOA4 in ferroptosis induced by intestinal ischemia reperfusion. Int. Immunopharmacol. 133, 112155 (2024).
[Article](https://doi.org/10.1016%2Fj.intimp.2024.112155)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38688134)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXptlWms7g%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oxidative%20medicine%20and%20cellular%20longevity%20the%20role%20and%20mechanism%20of%20NCOA4%20in%20ferroptosis%20induced%20by%20intestinal%20ischemia%20reperfusion&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2024.112155&volume=133&publication_year=2024&author=Li%2CK&author=Wang%2CA&author=Diao%2CY&author=Fan%2CS) 
  1. Deng, F. et al. The gut microbiota metabolite capsiate promotes Gpx4 expression by activating TRPV1 to inhibit intestinal ischemia reperfusion-induced ferroptosis. Gut Microbes 13, 1–21 (2021).
[Article](https://doi.org/10.1080%2F19490976.2021.1902719)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33779497)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20gut%20microbiota%20metabolite%20capsiate%20promotes%20Gpx4%20expression%20by%20activating%20TRPV1%20to%20inhibit%20intestinal%20ischemia%20reperfusion-induced%20ferroptosis&journal=Gut%20Microbes&doi=10.1080%2F19490976.2021.1902719&volume=13&pages=1-21&publication_year=2021&author=Deng%2CF) 
  1. Wang, X. et al. Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway. Mol. Med. 29, 137 (2023).
[Article](https://link.springer.com/doi/10.1186/s10020-023-00730-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37858064)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10588250)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitFOqsbzO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Resveratrol%20reduces%20ROS-induced%20ferroptosis%20by%20activating%20SIRT3%20and%20compensating%20the%20GSH%2FGPX4%20pathway&journal=Mol.%20Med.&doi=10.1186%2Fs10020-023-00730-6&volume=29&publication_year=2023&author=Wang%2CX) 
  1. Zhang, L. L. et al. Sestrin2 reduces ferroptosis via the Keap1/Nrf2 signaling pathway after intestinal ischemia-reperfusion. Free Radic. Biol. Med. 214, 115–128 (2024).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2024.02.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38331008)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXktVajsb8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Sestrin2%20reduces%20ferroptosis%20via%20the%20Keap1%2FNrf2%20signaling%20pathway%20after%20intestinal%20ischemia-reperfusion&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2024.02.003&volume=214&pages=115-128&publication_year=2024&author=Zhang%2CLL) 
  1. Chu, C. et al. Neutrophil extracellular traps drive intestinal microvascular endothelial ferroptosis by impairing Fundc1-dependent mitophagy. Redox Biol. 67, 102906 (2023).
[Article](https://doi.org/10.1016%2Fj.redox.2023.102906)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37812880)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10579540)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitVOqt7%2FN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Neutrophil%20extracellular%20traps%20drive%20intestinal%20microvascular%20endothelial%20ferroptosis%20by%20impairing%20Fundc1-dependent%20mitophagy&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2023.102906&volume=67&publication_year=2023&author=Chu%2CC) 
  1. Zhongyin, Z., Wei, W., Juan, X. & Guohua, F. Isoliquiritin apioside relieves intestinal ischemia/reperfusion-induced acute lung injury by blocking Hif-1alpha-mediated ferroptosis. Int. Immunopharmacol. 108, 108852 (2022).
[Article](https://doi.org/10.1016%2Fj.intimp.2022.108852)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35597117)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Isoliquiritin%20apioside%20relieves%20intestinal%20ischemia%2Freperfusion-induced%20acute%20lung%20injury%20by%20blocking%20Hif-1alpha-mediated%20ferroptosis&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2022.108852&volume=108&publication_year=2022&author=Zhongyin%2CZ&author=Wei%2CW&author=Juan%2CX&author=Guohua%2CF) 
  1. Tong, L. et al. Current understanding of osteoarthritis pathogenesis and relevant new approaches. Bone Res. 10, 60 (2022).
[Article](https://doi.org/10.1038%2Fs41413-022-00226-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36127328)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9489702)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XisVCqsr%2FL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Current%20understanding%20of%20osteoarthritis%20pathogenesis%20and%20relevant%20new%20approaches&journal=Bone%20Res.&doi=10.1038%2Fs41413-022-00226-9&volume=10&publication_year=2022&author=Tong%2CL) 
  1. Xu, Y. et al. Characteristics and time points to inhibit ferroptosis in human osteoarthritis. Sci. Rep. 13, 21592 (2023).
[Article](https://doi.org/10.1038%2Fs41598-023-49089-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38062071)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10703773)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXisFyqurzJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Characteristics%20and%20time%20points%20to%20inhibit%20ferroptosis%20in%20human%20osteoarthritis&journal=Sci.%20Rep.&doi=10.1038%2Fs41598-023-49089-y&volume=13&publication_year=2023&author=Xu%2CY) 
  1. Wang, L. et al. Ferroptosis-related genes LPCAT3 and PGD are potential diagnostic biomarkers for osteoarthritis. J. Orthop. Surg. Res. 18, 699 (2023).
[Article](https://link.springer.com/doi/10.1186/s13018-023-04128-2)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37723556)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10507893)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis-related%20genes%20LPCAT3%20and%20PGD%20are%20potential%20diagnostic%20biomarkers%20for%20osteoarthritis&journal=J.%20Orthop.%20Surg.%20Res.&doi=10.1186%2Fs13018-023-04128-2&volume=18&publication_year=2023&author=Wang%2CL) 
  1. Han, Z. et al. Ferroptosis: a new target for iron overload-induced hemophilic arthropathy synovitis. Ann. Hematol. 102, 1229–1237 (2023).
[Article](https://link.springer.com/doi/10.1007/s00277-023-05190-w)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36951967)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXmtF2qt74%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20a%20new%20target%20for%20iron%20overload-induced%20hemophilic%20arthropathy%20synovitis&journal=Ann.%20Hematol.&doi=10.1007%2Fs00277-023-05190-w&volume=102&pages=1229-1237&publication_year=2023&author=Han%2CZ) 
  1. Zhang, S. et al. The role played by ferroptosis in osteoarthritis: evidence based on iron dyshomeostasis and lipid peroxidation. Antioxidants 11, 1668 (2022).
  1. Li, H. et al. Combining single-cell RNA sequencing and population-based studies reveals hand osteoarthritis-associated chondrocyte subpopulations and pathways. Bone Res. 11, 58 (2023).
[Article](https://doi.org/10.1038%2Fs41413-023-00292-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37914703)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10620170)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Combining%20single-cell%20RNA%20sequencing%20and%20population-based%20studies%20reveals%20hand%20osteoarthritis-associated%20chondrocyte%20subpopulations%20and%20pathways&journal=Bone%20Res.&doi=10.1038%2Fs41413-023-00292-7&volume=11&publication_year=2023&author=Li%2CH) 
  1. Nugzar, O. et al. The role of ferritin and adiponectin as predictors of cartilage damage assessed by arthroscopy in patients with symptomatic knee osteoarthritis. Best. Pr. Res Clin. Rheumatol. 32, 662–668 (2018).
[Article](https://doi.org/10.1016%2Fj.berh.2019.04.004)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20ferritin%20and%20adiponectin%20as%20predictors%20of%20cartilage%20damage%20assessed%20by%20arthroscopy%20in%20patients%20with%20symptomatic%20knee%20osteoarthritis&journal=Best.%20Pr.%20Res%20Clin.%20Rheumatol.&doi=10.1016%2Fj.berh.2019.04.004&volume=32&pages=662-668&publication_year=2018&author=Nugzar%2CO) 
  1. Wu, L. et al. Association between iron intake and progression of knee osteoarthritis. Nutrients 14, 1674 (2022).
  1. Hunter, D. J. & Bierma-Zeinstra, S. Osteoarthritis. Lancet 393, 1745–1759 (2019).
[Article](https://doi.org/10.1016%2FS0140-6736%2819%2930417-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31034380)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXosVCjtLg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Osteoarthritis&journal=Lancet&doi=10.1016%2FS0140-6736%2819%2930417-9&volume=393&pages=1745-1759&publication_year=2019&author=Hunter%2CDJ&author=Bierma-Zeinstra%2CS) 
  1. Zhao, Z. et al. G protein-coupled receptor 30 activation inhibits ferroptosis and protects chondrocytes against osteoarthritis. J. Orthop. Transl. 44, 125–138 (2024).
[Google Scholar](http://scholar.google.com/scholar_lookup?&title=G%20protein-coupled%20receptor%2030%20activation%20inhibits%20ferroptosis%20and%20protects%20chondrocytes%20against%20osteoarthritis&journal=J.%20Orthop.%20Transl.&volume=44&pages=125-138&publication_year=2024&author=Zhao%2CZ) 
  1. Sun, K. et al. JNK-JUN-NCOA4 axis contributes to chondrocyte ferroptosis and aggravates osteoarthritis via ferritinophagy. Free Radic. Biol. Med. 200, 87–101 (2023).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2023.03.008)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36907253)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXltlemtb0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=JNK-JUN-NCOA4%20axis%20contributes%20to%20chondrocyte%20ferroptosis%20and%20aggravates%20osteoarthritis%20via%20ferritinophagy&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2023.03.008&volume=200&pages=87-101&publication_year=2023&author=Sun%2CK) 
  1. Regan, E. A., Bowler, R. P. & Crapo, J. D. Joint fluid antioxidants are decreased in osteoarthritic joints compared to joints with macroscopically intact cartilage and subacute injury. Osteoarthr. Cartil. 16, 515–521 (2008).
[Article](https://doi.org/10.1016%2Fj.joca.2007.09.001)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BD1c3itFWhsA%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Joint%20fluid%20antioxidants%20are%20decreased%20in%20osteoarthritic%20joints%20compared%20to%20joints%20with%20macroscopically%20intact%20cartilage%20and%20subacute%20injury&journal=Osteoarthr.%20Cartil.&doi=10.1016%2Fj.joca.2007.09.001&volume=16&pages=515-521&publication_year=2008&author=Regan%2CEA&author=Bowler%2CRP&author=Crapo%2CJD) 
  1. Yao, X. et al. Chondrocyte ferroptosis contribute to the progression of osteoarthritis. J. Orthop. Transl. 27, 33–43 (2021).
[Google Scholar](http://scholar.google.com/scholar_lookup?&title=Chondrocyte%20ferroptosis%20contribute%20to%20the%20progression%20of%20osteoarthritis&journal=J.%20Orthop.%20Transl.&volume=27&pages=33-43&publication_year=2021&author=Yao%2CX) 
  1. Wen, Z. et al. Selective clearance of senescent chondrocytes in osteoarthritis by targeting excitatory amino acid transporter protein 1 to induce ferroptosis. Antioxid. Redox Signal. 39, 262–277 (2023).
[Article](https://doi.org/10.1089%2Fars.2022.0141)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36601724)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitVCjs7nO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Selective%20clearance%20of%20senescent%20chondrocytes%20in%20osteoarthritis%20by%20targeting%20excitatory%20amino%20acid%20transporter%20protein%201%20to%20induce%20ferroptosis&journal=Antioxid.%20Redox%20Signal.&doi=10.1089%2Fars.2022.0141&volume=39&pages=262-277&publication_year=2023&author=Wen%2CZ) 
  1. Lv, M. et al. The RNA-binding protein SND1 promotes the degradation of GPX4 by destabilizing the HSPA5 mRNA and suppressing HSPA5 expression, promoting ferroptosis in osteoarthritis chondrocytes. Inflamm. Res. 71, 461–472 (2022).
[Article](https://link.springer.com/doi/10.1007/s00011-022-01547-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35320827)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XnvFSiurY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20RNA-binding%20protein%20SND1%20promotes%20the%20degradation%20of%20GPX4%20by%20destabilizing%20the%20HSPA5%20mRNA%20and%20suppressing%20HSPA5%20expression%2C%20promoting%20ferroptosis%20in%20osteoarthritis%20chondrocytes&journal=Inflamm.%20Res.&doi=10.1007%2Fs00011-022-01547-5&volume=71&pages=461-472&publication_year=2022&author=Lv%2CM) 
  1. Zheng, Z. et al. P21 resists ferroptosis in osteoarthritic chondrocytes by regulating GPX4 protein stability. Free Radic. Biol. Med. 212, 336–348 (2024).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2023.12.047)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38176476)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXmt1ehsQ%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=P21%20resists%20ferroptosis%20in%20osteoarthritic%20chondrocytes%20by%20regulating%20GPX4%20protein%20stability&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2023.12.047&volume=212&pages=336-348&publication_year=2024&author=Zheng%2CZ) 
  1. Zhao, C. et al. Forkhead box O3 attenuates osteoarthritis by suppressing ferroptosis through inactivation of NF-kappaB/MAPK signaling. J. Orthop. Transl. 39, 147–162 (2023).
[Google Scholar](http://scholar.google.com/scholar_lookup?&title=Forkhead%20box%20O3%20attenuates%20osteoarthritis%20by%20suppressing%20ferroptosis%20through%20inactivation%20of%20NF-kappaB%2FMAPK%20signaling&journal=J.%20Orthop.%20Transl.&volume=39&pages=147-162&publication_year=2023&author=Zhao%2CC) 
  1. Wang, S. et al. Mechanical overloading induces GPX4-regulated chondrocyte ferroptosis in osteoarthritis via Piezo1 channel facilitated calcium influx. J. Adv. Res. 41, 63–75 (2022).
[Article](https://doi.org/10.1016%2Fj.jare.2022.01.004)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36328754)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9637484)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhtFKkt7bM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mechanical%20overloading%20induces%20GPX4-regulated%20chondrocyte%20ferroptosis%20in%20osteoarthritis%20via%20Piezo1%20channel%20facilitated%20calcium%20influx&journal=J.%20Adv.%20Res.&doi=10.1016%2Fj.jare.2022.01.004&volume=41&pages=63-75&publication_year=2022&author=Wang%2CS) 
  1. Zhang, X. et al. Lipid peroxidation in osteoarthritis: focusing on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death Discov. 9, 320 (2023).
[Article](https://doi.org/10.1038%2Fs41420-023-01613-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37644030)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465515)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lipid%20peroxidation%20in%20osteoarthritis%3A%20focusing%20on%204-hydroxynonenal%2C%20malondialdehyde%2C%20and%20ferroptosis&journal=Cell%20Death%20Discov.&doi=10.1038%2Fs41420-023-01613-9&volume=9&publication_year=2023&author=Zhang%2CX) 
  1. Grigolo, B., Roseti, L., Fiorini, M. & Facchini, A. Enhanced lipid peroxidation in synoviocytes from patients with osteoarthritis. J. Rheumatol. 30, 345–347 (2003).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12563693)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXhslWntbo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Enhanced%20lipid%20peroxidation%20in%20synoviocytes%20from%20patients%20with%20osteoarthritis&journal=J.%20Rheumatol.&volume=30&pages=345-347&publication_year=2003&author=Grigolo%2CB&author=Roseti%2CL&author=Fiorini%2CM&author=Facchini%2CA) 
  1. Zou, Z. et al. Interplay between lipid dysregulation and ferroptosis in chondrocytes and the targeted therapy effect of metformin on osteoarthritis. J. Adv. Res. S2090-S1232 (2024).
  1. Yan, J. et al. Metformin alleviates osteoarthritis in mice by inhibiting chondrocyte ferroptosis and improving subchondral osteosclerosis and angiogenesis. J. Orthop. Surg. Res. 17, 333 (2022).
[Article](https://link.springer.com/doi/10.1186/s13018-022-03225-y)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35765024)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9238069)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhvV2ls7zL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metformin%20alleviates%20osteoarthritis%20in%20mice%20by%20inhibiting%20chondrocyte%20ferroptosis%20and%20improving%20subchondral%20osteosclerosis%20and%20angiogenesis&journal=J.%20Orthop.%20Surg.%20Res.&doi=10.1186%2Fs13018-022-03225-y&volume=17&publication_year=2022&author=Yan%2CJ) 
  1. Hu, Z. et al. Lipoxin A(4) ameliorates knee osteoarthritis progression in rats by antagonizing ferroptosis through activation of the ESR2/LPAR3/Nrf2 axis in synovial fibroblast-like synoviocytes. Redox Biol. 73, 103143 (2024).
[Article](https://doi.org/10.1016%2Fj.redox.2024.103143)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38754271)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11126537)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhtFWrurvO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Lipoxin%20A%284%29%20ameliorates%20knee%20osteoarthritis%20progression%20in%20rats%20by%20antagonizing%20ferroptosis%20through%20activation%20of%20the%20ESR2%2FLPAR3%2FNrf2%20axis%20in%20synovial%20fibroblast-like%20synoviocytes&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2024.103143&volume=73&publication_year=2024&author=Hu%2CZ) 
  1. Sun, W. et al. XJB-5-131 protects chondrocytes from ferroptosis to alleviate osteoarthritis progression via restoring Pebp1 expression. J. Orthop. Transl. 44, 114–124 (2024).
[Google Scholar](http://scholar.google.com/scholar_lookup?&title=XJB-5-131%20protects%20chondrocytes%20from%20ferroptosis%20to%20alleviate%20osteoarthritis%20progression%20via%20restoring%20Pebp1%20expression&journal=J.%20Orthop.%20Transl.&volume=44&pages=114-124&publication_year=2024&author=Sun%2CW) 
  1. Liu, Y. et al. Cartilage protective and anti-edema effects of JTF in osteoarthritis via inhibiting NCOA4-HMGB1-driven ferroptosis and aquaporin dysregulation. Phytomedicine 129, 155593 (2024).
[Article](https://doi.org/10.1016%2Fj.phymed.2024.155593)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38621329)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXps1KrsbY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cartilage%20protective%20and%20anti-edema%20effects%20of%20JTF%20in%20osteoarthritis%20via%20inhibiting%20NCOA4-HMGB1-driven%20ferroptosis%20and%20aquaporin%20dysregulation&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2024.155593&volume=129&publication_year=2024&author=Liu%2CY) 
  1. Xiao, J. et al. Icariin inhibits chondrocyte ferroptosis and alleviates osteoarthritis by enhancing the SLC7A11/GPX4 signaling. Int. Immunopharmacol. 133, 112010 (2024).
[Article](https://doi.org/10.1016%2Fj.intimp.2024.112010)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38636375)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXos1Sms7g%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Icariin%20inhibits%20chondrocyte%20ferroptosis%20and%20alleviates%20osteoarthritis%20by%20enhancing%20the%20SLC7A11%2FGPX4%20signaling&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2024.112010&volume=133&publication_year=2024&author=Xiao%2CJ) 
  1. Liu, J. et al. Baicalin inhibits IL-1beta-induced ferroptosis in human osteoarthritis chondrocytes by activating Nrf-2 signaling pathway. J. Orthop. Surg. Res. 19, 23 (2024).
[Article](https://link.springer.com/doi/10.1186/s13018-023-04483-0)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38166985)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763085)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Baicalin%20inhibits%20IL-1beta-induced%20ferroptosis%20in%20human%20osteoarthritis%20chondrocytes%20by%20activating%20Nrf-2%20signaling%20pathway&journal=J.%20Orthop.%20Surg.%20Res.&doi=10.1186%2Fs13018-023-04483-0&volume=19&publication_year=2024&author=Liu%2CJ) 
  1. Ruan, Q., Wang, C., Zhang, Y. & Sun, J. Ruscogenin attenuates cartilage destruction in osteoarthritis through suppressing chondrocyte ferroptosis via Nrf2/SLC7A11/GPX4 signaling pathway. Chem. Biol. Interact. 388, 110835 (2024).
[Article](https://doi.org/10.1016%2Fj.cbi.2023.110835)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38122922)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXis1OktrzM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ruscogenin%20attenuates%20cartilage%20destruction%20in%20osteoarthritis%20through%20suppressing%20chondrocyte%20ferroptosis%20via%20Nrf2%2FSLC7A11%2FGPX4%20signaling%20pathway&journal=Chem.%20Biol.%20Interact.&doi=10.1016%2Fj.cbi.2023.110835&volume=388&publication_year=2024&author=Ruan%2CQ&author=Wang%2CC&author=Zhang%2CY&author=Sun%2CJ) 
  1. Zhou, Y. et al. Curcumin reverses erastin-induced chondrocyte ferroptosis by upregulating Nrf2. Heliyon 9, e20163 (2023).
[Article](https://doi.org/10.1016%2Fj.heliyon.2023.e20163)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37771529)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522940)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvF2qsrrP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Curcumin%20reverses%20erastin-induced%20chondrocyte%20ferroptosis%20by%20upregulating%20Nrf2&journal=Heliyon&doi=10.1016%2Fj.heliyon.2023.e20163&volume=9&publication_year=2023&author=Zhou%2CY) 
  1. Ruan, Q., Wang, C., Zhang, Y. & Sun, J. Brevilin A attenuates cartilage destruction in osteoarthritis mouse model by inhibiting inflammation and ferroptosis via SIRT1/Nrf2/GPX4 signaling pathway. Int. Immunopharmacol. 124, 110924 (2023).
[Article](https://doi.org/10.1016%2Fj.intimp.2023.110924)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37717314)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFegt73M)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Brevilin%20A%20attenuates%20cartilage%20destruction%20in%20osteoarthritis%20mouse%20model%20by%20inhibiting%20inflammation%20and%20ferroptosis%20via%20SIRT1%2FNrf2%2FGPX4%20signaling%20pathway&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2023.110924&volume=124&publication_year=2023&author=Ruan%2CQ&author=Wang%2CC&author=Zhang%2CY&author=Sun%2CJ) 
  1. Gong, Z. et al. Cardamonin alleviates chondrocytes inflammation and cartilage degradation of osteoarthritis by inhibiting ferroptosis via p53 pathway. Food Chem. Toxicol. 174, 113644 (2023).
[Article](https://doi.org/10.1016%2Fj.fct.2023.113644)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36731815)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXivVyqu74%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cardamonin%20alleviates%20chondrocytes%20inflammation%20and%20cartilage%20degradation%20of%20osteoarthritis%20by%20inhibiting%20ferroptosis%20via%20p53%20pathway&journal=Food%20Chem.%20Toxicol.&doi=10.1016%2Fj.fct.2023.113644&volume=174&publication_year=2023&author=Gong%2CZ) 
  1. Wan, Y., Shen, K., Yu, H. & Fan, W. Baicalein limits osteoarthritis development by inhibiting chondrocyte ferroptosis. Free Radic. Biol. Med. 196, 108–120 (2023).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2023.01.006)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36657732)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsFSrs74%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Baicalein%20limits%20osteoarthritis%20development%20by%20inhibiting%20chondrocyte%20ferroptosis&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2023.01.006&volume=196&pages=108-120&publication_year=2023&author=Wan%2CY&author=Shen%2CK&author=Yu%2CH&author=Fan%2CW) 
  1. Peng, S., Sun, C., Lai, C. & Zhang, L. Exosomes derived from mesenchymal stem cells rescue cartilage injury in osteoarthritis through Ferroptosis by GOT1/CCR2 expression. Int. Immunopharmacol. 122, 110566 (2023).
[Article](https://doi.org/10.1016%2Fj.intimp.2023.110566)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37418985)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVWrtrrO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Exosomes%20derived%20from%20mesenchymal%20stem%20cells%20rescue%20cartilage%20injury%20in%20osteoarthritis%20through%20Ferroptosis%20by%20GOT1%2FCCR2%20expression&journal=Int.%20Immunopharmacol.&doi=10.1016%2Fj.intimp.2023.110566&volume=122&publication_year=2023&author=Peng%2CS&author=Sun%2CC&author=Lai%2CC&author=Zhang%2CL) 
  1. Guan, Z. et al. The gut microbiota metabolite capsiate regulate SLC2A1 expression by targeting HIF-1alpha to inhibit knee osteoarthritis-induced ferroptosis. Aging Cell 22, e13807 (2023).
[Article](https://doi.org/10.1111%2Facel.13807)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36890785)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10265160)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXkvVyhsbw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20gut%20microbiota%20metabolite%20capsiate%20regulate%20SLC2A1%20expression%20by%20targeting%20HIF-1alpha%20to%20inhibit%20knee%20osteoarthritis-induced%20ferroptosis&journal=Aging%20Cell&doi=10.1111%2Facel.13807&volume=22&publication_year=2023&author=Guan%2CZ) 
  1. Zhou, X. et al. D-mannose alleviates osteoarthritis progression by inhibiting chondrocyte ferroptosis in a HIF-2alpha-dependent manner. Cell Prolif. 54, e13134 (2021).
[Article](https://doi.org/10.1111%2Fcpr.13134)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34561933)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8560605)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXisVynu7%2FP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=D-mannose%20alleviates%20osteoarthritis%20progression%20by%20inhibiting%20chondrocyte%20ferroptosis%20in%20a%20HIF-2alpha-dependent%20manner&journal=Cell%20Prolif.&doi=10.1111%2Fcpr.13134&volume=54&publication_year=2021&author=Zhou%2CX) 
  1. Yang, F. et al. Melatonin protects bone marrow mesenchymal stem cells against iron overload-induced aberrant differentiation and senescence. J. Pineal Res. 63, e12422 (2017).
  1. Luo, C. et al. Canonical Wnt signaling works downstream of iron overload to prevent ferroptosis from damaging osteoblast differentiation. Free Radic. Biol. Med. 188, 337–350 (2022).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2022.06.236)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35752374)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xhs1yitbbN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Canonical%20Wnt%20signaling%20works%20downstream%20of%20iron%20overload%20to%20prevent%20ferroptosis%20from%20damaging%20osteoblast%20differentiation&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2022.06.236&volume=188&pages=337-350&publication_year=2022&author=Luo%2CC) 
  1. Chen, Y. et al. Type 2 diabetic mellitus related osteoporosis: focusing on ferroptosis. J. Transl. Med. 22, 409 (2024).
[Article](https://link.springer.com/doi/10.1186/s12967-024-05191-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38693581)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11064363)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhtVOrtb3E)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Type%202%20diabetic%20mellitus%20related%20osteoporosis%3A%20focusing%20on%20ferroptosis&journal=J.%20Transl.%20Med.&doi=10.1186%2Fs12967-024-05191-x&volume=22&publication_year=2024&author=Chen%2CY) 
  1. Zhang, T. et al. The multifaceted regulation of mitophagy by endogenous metabolites. Autophagy 18, 1216–1239 (2022).
[Article](https://doi.org/10.1080%2F15548627.2021.1975914)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34583624)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXit1KhsbbL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20multifaceted%20regulation%20of%20mitophagy%20by%20endogenous%20metabolites&journal=Autophagy&doi=10.1080%2F15548627.2021.1975914&volume=18&pages=1216-1239&publication_year=2022&author=Zhang%2CT) 
  1. Wang, X. et al. Mitochondrial ferritin deficiency promotes osteoblastic ferroptosis via mitophagy in type 2 diabetic osteoporosis. Biol. Trace Elem. Res. 200, 298–307 (2022).
[Article](https://link.springer.com/doi/10.1007/s12011-021-02627-z)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33594527)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXkt1Wrsb0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitochondrial%20ferritin%20deficiency%20promotes%20osteoblastic%20ferroptosis%20via%20mitophagy%20in%20type%202%20diabetic%20osteoporosis&journal=Biol.%20Trace%20Elem.%20Res.&doi=10.1007%2Fs12011-021-02627-z&volume=200&pages=298-307&publication_year=2022&author=Wang%2CX) 
  1. Park, S. Y., Choi, K. H., Jun, J. E. & Chung, H. Y. Effects of advanced glycation end products on differentiation and function of osteoblasts and osteoclasts. J. Korean Med. Sci. 36, e239 (2021).
[Article](https://doi.org/10.3346%2Fjkms.2021.36.e239)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34581519)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8476938)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXisVartb3E)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effects%20of%20advanced%20glycation%20end%20products%20on%20differentiation%20and%20function%20of%20osteoblasts%20and%20osteoclasts&journal=J.%20Korean%20Med.%20Sci.&doi=10.3346%2Fjkms.2021.36.e239&volume=36&publication_year=2021&author=Park%2CSY&author=Choi%2CKH&author=Jun%2CJE&author=Chung%2CHY) 
  1. Du, Y. X., Zhao, Y. T., Sun, Y. X. & Xu, A. H. Acid sphingomyelinase mediates ferroptosis induced by high glucose via autophagic degradation of GPX4 in type 2 diabetic osteoporosis. Mol. Med. 29, 125 (2023).
[Article](https://link.springer.com/doi/10.1186/s10020-023-00724-4)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37710183)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10500928)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFamu77E)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Acid%20sphingomyelinase%20mediates%20ferroptosis%20induced%20by%20high%20glucose%20via%20autophagic%20degradation%20of%20GPX4%20in%20type%202%20diabetic%20osteoporosis&journal=Mol.%20Med.&doi=10.1186%2Fs10020-023-00724-4&volume=29&publication_year=2023&author=Du%2CYX&author=Zhao%2CYT&author=Sun%2CYX&author=Xu%2CAH) 
  1. Xu, P. et al. VDR activation attenuates osteoblastic ferroptosis and senescence by stimulating the Nrf2/GPX4 pathway in age-related osteoporosis. Free Radic. Biol. Med. 193, 720–735 (2022).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2022.11.013)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36402439)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XivFaks7fN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=VDR%20activation%20attenuates%20osteoblastic%20ferroptosis%20and%20senescence%20by%20stimulating%20the%20Nrf2%2FGPX4%20pathway%20in%20age-related%20osteoporosis&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2022.11.013&volume=193&pages=720-735&publication_year=2022&author=Xu%2CP) 
  1. Wang, M. et al. ED-71 ameliorates bone regeneration in type 2 diabetes by reducing ferroptosis in osteoblasts via the HIF1alpha pathway. Eur. J. Pharm. 969, 176303 (2024).
[Article](https://doi.org/10.1016%2Fj.ejphar.2023.176303)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXks1ars7c%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ED-71%20ameliorates%20bone%20regeneration%20in%20type%202%20diabetes%20by%20reducing%20ferroptosis%20in%20osteoblasts%20via%20the%20HIF1alpha%20pathway&journal=Eur.%20J.%20Pharm.&doi=10.1016%2Fj.ejphar.2023.176303&volume=969&publication_year=2024&author=Wang%2CM) 
  1. Jin, C. et al. A novel anti-osteoporosis mechanism of VK2: interfering with ferroptosis via AMPK/SIRT1 pathway in type 2 diabetic osteoporosis. J. Agric Food Chem. 71, 2745–2761 (2023).
[Article](https://doi.org/10.1021%2Facs.jafc.2c05632)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36719855)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitFCjtLs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20novel%20anti-osteoporosis%20mechanism%20of%20VK2%3A%20interfering%20with%20ferroptosis%20via%20AMPK%2FSIRT1%20pathway%20in%20type%202%20diabetic%20osteoporosis&journal=J.%20Agric%20Food%20Chem.&doi=10.1021%2Facs.jafc.2c05632&volume=71&pages=2745-2761&publication_year=2023&author=Jin%2CC) 
  1. Lu, J. et al. Extracellular vesicles from endothelial progenitor cells prevent steroid-induced osteoporosis by suppressing the ferroptotic pathway in mouse osteoblasts based on bioinformatics evidence. Sci. Rep. 9, 16130 (2019).
[Article](https://doi.org/10.1038%2Fs41598-019-52513-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31695092)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834614)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Extracellular%20vesicles%20from%20endothelial%20progenitor%20cells%20prevent%20steroid-induced%20osteoporosis%20by%20suppressing%20the%20ferroptotic%20pathway%20in%20mouse%20osteoblasts%20based%20on%20bioinformatics%20evidence&journal=Sci.%20Rep.&doi=10.1038%2Fs41598-019-52513-x&volume=9&publication_year=2019&author=Lu%2CJ) 
  1. Jing, Z. et al. Tobacco toxins induce osteoporosis through ferroptosis. Redox Biol. 67, 102922 (2023).
[Article](https://doi.org/10.1016%2Fj.redox.2023.102922)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37826866)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10571034)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitFWmtLbK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Tobacco%20toxins%20induce%20osteoporosis%20through%20ferroptosis&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2023.102922&volume=67&publication_year=2023&author=Jing%2CZ) 
  1. Zhang, H. et al. Osteoporotic bone loss from excess iron accumulation is driven by NOX4-triggered ferroptosis in osteoblasts. Free Radic. Biol. Med. 198, 123–136 (2023).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2023.01.026)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36738798)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXjt1ahu70%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Osteoporotic%20bone%20loss%20from%20excess%20iron%20accumulation%20is%20driven%20by%20NOX4-triggered%20ferroptosis%20in%20osteoblasts&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2023.01.026&volume=198&pages=123-136&publication_year=2023&author=Zhang%2CH) 
  1. Jiang, Z. et al. Ferroptosis in osteocytes as a target for protection against postmenopausal osteoporosis. Adv. Sci. 11, e2307388 (2024).
[Article](https://doi.org/10.1002%2Fadvs.202307388)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20in%20osteocytes%20as%20a%20target%20for%20protection%20against%20postmenopausal%20osteoporosis&journal=Adv.%20Sci.&doi=10.1002%2Fadvs.202307388&volume=11&publication_year=2024&author=Jiang%2CZ) 
  1. Ishii, K. A. et al. Coordination of PGC-1beta and iron uptake in mitochondrial biogenesis and osteoclast activation. Nat. Med. 15, 259–266 (2009).
[Article](https://doi.org/10.1038%2Fnm.1910)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19252502)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXisVOrtrg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Coordination%20of%20PGC-1beta%20and%20iron%20uptake%20in%20mitochondrial%20biogenesis%20and%20osteoclast%20activation&journal=Nat.%20Med.&doi=10.1038%2Fnm.1910&volume=15&pages=259-266&publication_year=2009&author=Ishii%2CKA) 
  1. Qu, X., Sun, Z., Wang, Y. & Ong, H. S. Zoledronic acid promotes osteoclasts ferroptosis by inhibiting FBXO9-mediated p53 ubiquitination and degradation. PeerJ 9, e12510 (2021).
[Article](https://doi.org/10.7717%2Fpeerj.12510)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35003915)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8684721)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Zoledronic%20acid%20promotes%20osteoclasts%20ferroptosis%20by%20inhibiting%20FBXO9-mediated%20p53%20ubiquitination%20and%20degradation&journal=PeerJ&doi=10.7717%2Fpeerj.12510&volume=9&publication_year=2021&author=Qu%2CX&author=Sun%2CZ&author=Wang%2CY&author=Ong%2CHS) 
  1. Ni, S. et al. Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic. Biol. Med. 169, 271–282 (2021).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2021.04.027)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33895289)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVSqsLrK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hypoxia%20inhibits%20RANKL-induced%20ferritinophagy%20and%20protects%20osteoclasts%20from%20ferroptosis&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2021.04.027&volume=169&pages=271-282&publication_year=2021&author=Ni%2CS) 
  1. Yin, Y. et al. Osteocyte ferroptosis induced by ATF3/TFR1 contributes to cortical bone loss during ageing. Cell Prolif. https://doi.org/10.1111/cpr.13657 (2024).
  1. Yang, Y. et al. Targeting ferroptosis suppresses osteocyte glucolipotoxicity and alleviates diabetic osteoporosis. Bone Res. 10, 26 (2022).
[Article](https://doi.org/10.1038%2Fs41413-022-00198-w)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35260560)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904790)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XmsFajt78%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20ferroptosis%20suppresses%20osteocyte%20glucolipotoxicity%20and%20alleviates%20diabetic%20osteoporosis&journal=Bone%20Res.&doi=10.1038%2Fs41413-022-00198-w&volume=10&publication_year=2022&author=Yang%2CY) 
  1. Tao, L. et al. Exerkine FNDC5/irisin-enriched exosomes promote proliferation and inhibit ferroptosis of osteoblasts through interaction with Caveolin-1. Aging Cell 23, e14181 (2024).
[Article](https://doi.org/10.1111%2Facel.14181)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38689463)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11320359)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXpvFWku7o%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Exerkine%20FNDC5%2Firisin-enriched%20exosomes%20promote%20proliferation%20and%20inhibit%20ferroptosis%20of%20osteoblasts%20through%20interaction%20with%20Caveolin-1&journal=Aging%20Cell&doi=10.1111%2Facel.14181&volume=23&publication_year=2024&author=Tao%2CL) 
  1. Deng, X. et al. Mangiferin attenuates osteoporosis by inhibiting osteoblastic ferroptosis through Keap1/Nrf2/SLC7A11/GPX4 pathway. Phytomedicine 124, 155282 (2024).
[Article](https://doi.org/10.1016%2Fj.phymed.2023.155282)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38176266)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXht1ymtr0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mangiferin%20attenuates%20osteoporosis%20by%20inhibiting%20osteoblastic%20ferroptosis%20through%20Keap1%2FNrf2%2FSLC7A11%2FGPX4%20pathway&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2023.155282&volume=124&publication_year=2024&author=Deng%2CX) 
  1. Xu, C. Y. et al. Poliumoside protects against type 2 diabetes-related osteoporosis by suppressing ferroptosis via activation of the Nrf2/GPX4 pathway. Phytomedicine 125, 155342 (2024).
[Article](https://doi.org/10.1016%2Fj.phymed.2024.155342)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38295665)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXjtVektLc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Poliumoside%20protects%20against%20type%202%20diabetes-related%20osteoporosis%20by%20suppressing%20ferroptosis%20via%20activation%20of%20the%20Nrf2%2FGPX4%20pathway&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2024.155342&volume=125&publication_year=2024&author=Xu%2CCY) 
  1. Yang, Y. et al. Prevention and treatment of osteoporosis with natural products: regulatory mechanism based on cell ferroptosis. J. Orthop. Surg. Res. 18, 951 (2023).
[Article](https://link.springer.com/doi/10.1186/s13018-023-04448-3)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38082321)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10712195)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Prevention%20and%20treatment%20of%20osteoporosis%20with%20natural%20products%3A%20regulatory%20mechanism%20based%20on%20cell%20ferroptosis&journal=J.%20Orthop.%20Surg.%20Res.&doi=10.1186%2Fs13018-023-04448-3&volume=18&publication_year=2023&author=Yang%2CY) 
  1. Bauer, J. et al. Sarcopenia: a time for action. an SCWD position paper. J. Cachexia Sarcopenia Muscle 10, 956–961 (2019).
[Article](https://doi.org/10.1002%2Fjcsm.12483)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31523937)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6818450)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Sarcopenia%3A%20a%20time%20for%20action.%20an%20SCWD%20position%20paper&journal=J.%20Cachexia%20Sarcopenia%20Muscle&doi=10.1002%2Fjcsm.12483&volume=10&pages=956-961&publication_year=2019&author=Bauer%2CJ) 
  1. Scicchitano, B. M., Pelosi, L., Sica, G. & Musaro, A. The physiopathologic role of oxidative stress in skeletal muscle. Mech. Ageing Dev. 170, 37–44 (2018).
[Article](https://doi.org/10.1016%2Fj.mad.2017.08.009)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28851603)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhsVSltrrP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20physiopathologic%20role%20of%20oxidative%20stress%20in%20skeletal%20muscle&journal=Mech.%20Ageing%20Dev.&doi=10.1016%2Fj.mad.2017.08.009&volume=170&pages=37-44&publication_year=2018&author=Scicchitano%2CBM&author=Pelosi%2CL&author=Sica%2CG&author=Musaro%2CA) 
  1. Kozakowska, M., Pietraszek-Gremplewicz, K., Jozkowicz, A. & Dulak, J. The role of oxidative stress in skeletal muscle injury and regeneration: focus on antioxidant enzymes. J. Muscle Res. Cell Motil. 36, 377–393 (2015).
[Article](https://link.springer.com/doi/10.1007/s10974-015-9438-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26728750)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xjslaltw%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20oxidative%20stress%20in%20skeletal%20muscle%20injury%20and%20regeneration%3A%20focus%20on%20antioxidant%20enzymes&journal=J.%20Muscle%20Res.%20Cell%20Motil.&doi=10.1007%2Fs10974-015-9438-9&volume=36&pages=377-393&publication_year=2015&author=Kozakowska%2CM&author=Pietraszek-Gremplewicz%2CK&author=Jozkowicz%2CA&author=Dulak%2CJ) 
  1. DeRuisseau, K. C. et al. Aging-related changes in the iron status of skeletal muscle. Exp. Gerontol. 48, 1294–1302 (2013).
[Article](https://doi.org/10.1016%2Fj.exger.2013.08.011)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23994517)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhs1Witb3N)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Aging-related%20changes%20in%20the%20iron%20status%20of%20skeletal%20muscle&journal=Exp.%20Gerontol.&doi=10.1016%2Fj.exger.2013.08.011&volume=48&pages=1294-1302&publication_year=2013&author=DeRuisseau%2CKC) 
  1. Hofer, T. et al. Increased iron content and RNA oxidative damage in skeletal muscle with aging and disuse atrophy. Exp. Gerontol. 43, 563–570 (2008).
[Article](https://doi.org/10.1016%2Fj.exger.2008.02.007)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18395385)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2601529)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXmtlyitbo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Increased%20iron%20content%20and%20RNA%20oxidative%20damage%20in%20skeletal%20muscle%20with%20aging%20and%20disuse%20atrophy&journal=Exp.%20Gerontol.&doi=10.1016%2Fj.exger.2008.02.007&volume=43&pages=563-570&publication_year=2008&author=Hofer%2CT) 
  1. Supruniuk, E., Gorski, J. & Chabowski, A. Endogenous and exogenous antioxidants in skeletal muscle fatigue development during exercise. Antioxidants 12, 501 (2023).
  1. Ikeda, Y. et al. Iron-induced skeletal muscle atrophy involves an Akt-forkhead box O3-E3 ubiquitin ligase-dependent pathway. J. Trace Elem. Med. Biol. 35, 66–76 (2016).
[Article](https://doi.org/10.1016%2Fj.jtemb.2016.01.011)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27049128)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XisVyksLs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron-induced%20skeletal%20muscle%20atrophy%20involves%20an%20Akt-forkhead%20box%20O3-E3%20ubiquitin%20ligase-dependent%20pathway&journal=J.%20Trace%20Elem.%20Med.%20Biol.&doi=10.1016%2Fj.jtemb.2016.01.011&volume=35&pages=66-76&publication_year=2016&author=Ikeda%2CY) 
  1. Corna, G. et al. The repair of skeletal muscle requires iron recycling through macrophage ferroportin. J. Immunol. 197, 1914–1925 (2016).
[Article](https://doi.org/10.4049%2Fjimmunol.1501417)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27465531)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhtlOgtrfP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20repair%20of%20skeletal%20muscle%20requires%20iron%20recycling%20through%20macrophage%20ferroportin&journal=J.%20Immunol.&doi=10.4049%2Fjimmunol.1501417&volume=197&pages=1914-1925&publication_year=2016&author=Corna%2CG) 
  1. Chen, Y., Zhang, Y., Zhang, S. & Ren, H. Molecular insights into sarcopenia: ferroptosis-related genes as diagnostic and therapeutic targets. J. Biomol. Struct. Dyn. https://doi.org/10.1080/07391102.2023.2298390 (2024).
  1. Zhong, D. et al. Induction of lysosomal exocytosis and biogenesis via TRPML1 activation for the treatment of uranium-induced nephrotoxicity. Nat. Commun. 14, 3997 (2023).
[Article](https://doi.org/10.1038%2Fs41467-023-39716-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37414766)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10326073)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVeisr3F)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Induction%20of%20lysosomal%20exocytosis%20and%20biogenesis%20via%20TRPML1%20activation%20for%20the%20treatment%20of%20uranium-induced%20nephrotoxicity&journal=Nat.%20Commun.&doi=10.1038%2Fs41467-023-39716-7&volume=14&publication_year=2023&author=Zhong%2CD) 
  1. Zhang, H. L. et al. TRPML1 triggers ferroptosis defense and is a potential therapeutic target in AKT-hyperactivated cancer. Sci. Transl. Med. 16, eadk0330 (2024).
[Article](https://doi.org/10.1126%2Fscitranslmed.adk0330)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38924427)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=TRPML1%20triggers%20ferroptosis%20defense%20and%20is%20a%20potential%20therapeutic%20target%20in%20AKT-hyperactivated%20cancer&journal=Sci.%20Transl.%20Med.&doi=10.1126%2Fscitranslmed.adk0330&volume=16&publication_year=2024&author=Zhang%2CHL) 
  1. Lorito, N. et al. FADS1/2 control lipid metabolism and ferroptosis susceptibility in triple-negative breast cancer. EMBO Mol. Med. 16,1533-1559 (2024).
  1. Zeng, L. et al. Macrophage migration inhibitor factor (MIF): potential role in cognitive impairment disorders. Cytokine Growth Factor Rev. 77, 67–75 (2024).
[Article](https://doi.org/10.1016%2Fj.cytogfr.2024.03.003)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38548489)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXmvFCis70%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Macrophage%20migration%20inhibitor%20factor%20%28MIF%29%3A%20potential%20role%20in%20cognitive%20impairment%20disorders&journal=Cytokine%20Growth%20Factor%20Rev.&doi=10.1016%2Fj.cytogfr.2024.03.003&volume=77&pages=67-75&publication_year=2024&author=Zeng%2CL) 
  1. Chen, D. et al. Small molecule mif modulation enhances ferroptosis by impairing DNA repair mechanisms. Adv. Sci. 11, 2403963 (2024).
  1. Yin, X. et al. HDAC1 governs iron homeostasis independent of histone deacetylation in iron-overload murine models. Antioxid. Redox Signal. 28, 1224–1237 (2018).
[Article](https://doi.org/10.1089%2Fars.2017.7161)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29113455)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXmvVejurg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=HDAC1%20governs%20iron%20homeostasis%20independent%20of%20histone%20deacetylation%20in%20iron-overload%20murine%20models&journal=Antioxid.%20Redox%20Signal.&doi=10.1089%2Fars.2017.7161&volume=28&pages=1224-1237&publication_year=2018&author=Yin%2CX) 
  1. Meng, H. et al. Hepatic HDAC3 regulates systemic iron homeostasis and ferroptosis via the hippo signaling pathway. Research 6, 0281 (2023).
[Article](https://doi.org/10.34133%2Fresearch.0281)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38034086)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10687581)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXitlWqtbk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepatic%20HDAC3%20regulates%20systemic%20iron%20homeostasis%20and%20ferroptosis%20via%20the%20hippo%20signaling%20pathway&journal=Research&doi=10.34133%2Fresearch.0281&volume=6&publication_year=2023&author=Meng%2CH) 
  1. Jiang, Z. et al. Attenuation of neuronal ferroptosis in intracerebral hemorrhage by inhibiting HDAC1/2: microglial heterogenization via the Nrf2/HO1 pathway. CNS Neurosci. Ther. 30, e14646 (2024).
[Article](https://doi.org/10.1111%2Fcns.14646)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38523117)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10961428)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXmvV2it7Y%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Attenuation%20of%20neuronal%20ferroptosis%20in%20intracerebral%20hemorrhage%20by%20inhibiting%20HDAC1%2F2%3A%20microglial%20heterogenization%20via%20the%20Nrf2%2FHO1%20pathway&journal=CNS%20Neurosci.%20Ther.&doi=10.1111%2Fcns.14646&volume=30&publication_year=2024&author=Jiang%2CZ) 
  1. Wang, L. et al. Structures and gating mechanism of human TRPM2. Science 362, eaav4809 (2018).
  1. Zhong, C. et al. TRPM2 mediates hepatic ischemia-reperfusion injury via Ca(2+)-induced mitochondrial lipid peroxidation through increasing ALOX12 expression. Research 6, 0159 (2023).
[Article](https://doi.org/10.34133%2Fresearch.0159)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37275121)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10232356)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslSqt7%2FP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=TRPM2%20mediates%20hepatic%20ischemia-reperfusion%20injury%20via%20Ca%282%2B%29-induced%20mitochondrial%20lipid%20peroxidation%20through%20increasing%20ALOX12%20expression&journal=Research&doi=10.34133%2Fresearch.0159&volume=6&publication_year=2023&author=Zhong%2CC) 
  1. Angeli, J. P. F., Shah, R., Pratt, D. A. & Conrad, M. Ferroptosis inhibition: mechanisms and opportunities. Trends Pharm. Sci. 38, 489–498 (2017).
[Article](https://doi.org/10.1016%2Fj.tips.2017.02.005)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28363764)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXkt1Sqt7w%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20inhibition%3A%20mechanisms%20and%20opportunities&journal=Trends%20Pharm.%20Sci.&doi=10.1016%2Fj.tips.2017.02.005&volume=38&pages=489-498&publication_year=2017&author=Angeli%2CJPF&author=Shah%2CR&author=Pratt%2CDA&author=Conrad%2CM) 
  1. Funchal, C. et al. Morphological alterations and induction of oxidative stress in glial cells caused by the branched-chain alpha-keto acids accumulating in maple syrup urine disease. Neurochem. Int. 49, 640–650 (2006).
[Article](https://doi.org/10.1016%2Fj.neuint.2006.05.007)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16822590)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XhtFSlu7%2FK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Morphological%20alterations%20and%20induction%20of%20oxidative%20stress%20in%20glial%20cells%20caused%20by%20the%20branched-chain%20alpha-keto%20acids%20accumulating%20in%20maple%20syrup%20urine%20disease&journal=Neurochem.%20Int.&doi=10.1016%2Fj.neuint.2006.05.007&volume=49&pages=640-650&publication_year=2006&author=Funchal%2CC) 
  1. Li, T. et al. PPM1K mediates metabolic disorder of branched-chain amino acid and regulates cerebral ischemia-reperfusion injury by activating ferroptosis in neurons. Cell Death Dis. 14, 634 (2023).
[Article](https://doi.org/10.1038%2Fs41419-023-06135-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37752100)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10522625)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitVSqsrjJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=PPM1K%20mediates%20metabolic%20disorder%20of%20branched-chain%20amino%20acid%20and%20regulates%20cerebral%20ischemia-reperfusion%20injury%20by%20activating%20ferroptosis%20in%20neurons&journal=Cell%20Death%20Dis.&doi=10.1038%2Fs41419-023-06135-x&volume=14&publication_year=2023&author=Li%2CT) 
  1. Read, C. et al. International union of basic and clinical pharmacology. CVII. Structure and pharmacology of the apelin receptor with a recommendation that elabela/toddler is a second endogenous peptide ligand. Pharm. Rev. 71, 467–502 (2019).
[Article](https://doi.org/10.1124%2Fpr.119.017533)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31492821)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6731456)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtFersrzO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=International%20union%20of%20basic%20and%20clinical%20pharmacology.%20CVII.%20Structure%20and%20pharmacology%20of%20the%20apelin%20receptor%20with%20a%20recommendation%20that%20elabela%2Ftoddler%20is%20a%20second%20endogenous%20peptide%20ligand&journal=Pharm.%20Rev.&doi=10.1124%2Fpr.119.017533&volume=71&pages=467-502&publication_year=2019&author=Read%2CC) 
  1. Xu, P. et al. Elabela-APJ axis attenuates cerebral ischemia/reperfusion injury by inhibiting neuronal ferroptosis. Free Radic. Biol. Med. 196, 171–186 (2023).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2023.01.008)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36681202)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslSjtr8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Elabela-APJ%20axis%20attenuates%20cerebral%20ischemia%2Freperfusion%20injury%20by%20inhibiting%20neuronal%20ferroptosis&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2023.01.008&volume=196&pages=171-186&publication_year=2023&author=Xu%2CP) 
  1. Li, X. et al. Small extracellular vesicles delivering lncRNA WAC-AS1 aggravate renal allograft ischemia‒reperfusion injury by inducing ferroptosis propagation. Cell Death Differ. 30, 2167–2186 (2023).
[Article](https://doi.org/10.1038%2Fs41418-023-01198-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37532764)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10482833)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhs1GgurbE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Small%20extracellular%20vesicles%20delivering%20lncRNA%20WAC-AS1%20aggravate%20renal%20allograft%20ischemia%E2%80%92reperfusion%20injury%20by%20inducing%20ferroptosis%20propagation&journal=Cell%20Death%20Differ.&doi=10.1038%2Fs41418-023-01198-x&volume=30&pages=2167-2186&publication_year=2023&author=Li%2CX) 
  1. Wu, T. et al. Circulating small extracellular vesicle-encapsulated SEMA5A-IT1 attenuates myocardial ischemia-reperfusion injury after cardiac surgery with cardiopulmonary bypass. Cell Mol. Biol. Lett. 27, 95 (2022).
[Article](https://link.springer.com/doi/10.1186/s11658-022-00395-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36284269)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9594885)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XislKit7bJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Circulating%20small%20extracellular%20vesicle-encapsulated%20SEMA5A-IT1%20attenuates%20myocardial%20ischemia-reperfusion%20injury%20after%20cardiac%20surgery%20with%20cardiopulmonary%20bypass&journal=Cell%20Mol.%20Biol.%20Lett.&doi=10.1186%2Fs11658-022-00395-9&volume=27&publication_year=2022&author=Wu%2CT) 
  1. Huang, Q. et al. Identification of a targeted ACSL4 inhibitor to treat ferroptosis-related diseases. Sci. Adv. 10, eadk1200 (2024).
[Article](https://doi.org/10.1126%2Fsciadv.adk1200)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38552012)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10980261)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXns12ltbg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identification%20of%20a%20targeted%20ACSL4%20inhibitor%20to%20treat%20ferroptosis-related%20diseases&journal=Sci.%20Adv.&doi=10.1126%2Fsciadv.adk1200&volume=10&publication_year=2024&author=Huang%2CQ) 
  1. Duan, J. et al. Therapeutic targeting of hepatic ACSL4 ameliorates NASH in mice. Hepatology 75, 140–153 (2022).
[Article](https://doi.org/10.1002%2Fhep.32148)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34510514)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XksVWhsw%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Therapeutic%20targeting%20of%20hepatic%20ACSL4%20ameliorates%20NASH%20in%20mice&journal=Hepatology&doi=10.1002%2Fhep.32148&volume=75&pages=140-153&publication_year=2022&author=Duan%2CJ) 
  1. Liu, Y. et al. In situ self-assembled phytopolyphenol-coordinated intelligent nanotherapeutics for multipronged management of ferroptosis-driven Alzheimer’s disease. ACS Nano 18, 7890–7906 (2024).
[Article](https://doi.org/10.1021%2Facsnano.3c09286)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38445977)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXltVCjsbY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=In%20situ%20self-assembled%20phytopolyphenol-coordinated%20intelligent%20nanotherapeutics%20for%20multipronged%20management%20of%20ferroptosis-driven%20Alzheimer%E2%80%99s%20disease&journal=ACS%20Nano&doi=10.1021%2Facsnano.3c09286&volume=18&pages=7890-7906&publication_year=2024&author=Liu%2CY) 
  1. Herpich, F. & Rincon, F. Management of acute ischemic stroke. Crit. Care Med. 48, 1654–1663 (2020).
[Article](https://doi.org/10.1097%2FCCM.0000000000004597)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32947473)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7540624)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Management%20of%20acute%20ischemic%20stroke&journal=Crit.%20Care%20Med.&doi=10.1097%2FCCM.0000000000004597&volume=48&pages=1654-1663&publication_year=2020&author=Herpich%2CF&author=Rincon%2CF) 
  1. Jin, Q. et al. Edaravone-encapsulated agonistic micelles rescue ischemic brain tissue by tuning blood-brain barrier permeability. Theranostics 7, 884–898 (2017).
[Article](https://doi.org/10.7150%2Fthno.18219)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28382161)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5381251)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXjsVSksrY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Edaravone-encapsulated%20agonistic%20micelles%20rescue%20ischemic%20brain%20tissue%20by%20tuning%20blood-brain%20barrier%20permeability&journal=Theranostics&doi=10.7150%2Fthno.18219&volume=7&pages=884-898&publication_year=2017&author=Jin%2CQ) 
  1. Zhang, Y. et al. Edaravone-loaded poly(amino acid) nanogel inhibits ferroptosis for neuroprotection in cerebral ischemia injury. Asian J. Pharm. Sci. 19, 100886 (2024).
[Article](https://doi.org/10.1016%2Fj.ajps.2024.100886)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38590795)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10999513)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Edaravone-loaded%20poly%28amino%20acid%29%20nanogel%20inhibits%20ferroptosis%20for%20neuroprotection%20in%20cerebral%20ischemia%20injury&journal=Asian%20J.%20Pharm.%20Sci.&doi=10.1016%2Fj.ajps.2024.100886&volume=19&publication_year=2024&author=Zhang%2CY) 
  1. Zhuge, X. et al. A multifunctional nanoplatform for chemotherapy and nanocatalytic synergistic cancer therapy achieved by amplified lipid peroxidation. Acta Biomater. 184, 419-430 (2024).
  1. Ding, C. et al. Neutrophil membrane-inspired nanorobots act as antioxidants ameliorate ischemia reperfusion-induced acute kidney injury. ACS Appl. Mater. Interfaces 15, 40292–40303 (2023).
[Article](https://doi.org/10.1021%2Facsami.3c08573)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37603686)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslWktLfO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Neutrophil%20membrane-inspired%20nanorobots%20act%20as%20antioxidants%20ameliorate%20ischemia%20reperfusion-induced%20acute%20kidney%20injury&journal=ACS%20Appl.%20Mater.%20Interfaces&doi=10.1021%2Facsami.3c08573&volume=15&pages=40292-40303&publication_year=2023&author=Ding%2CC) 
  1. Niu, B. et al. Application of glutathione depletion in cancer therapy: enhanced ROS-based therapy, ferroptosis, and chemotherapy. Biomaterials 277, 121110 (2021).
[Article](https://doi.org/10.1016%2Fj.biomaterials.2021.121110)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34482088)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhvFCjt7nO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Application%20of%20glutathione%20depletion%20in%20cancer%20therapy%3A%20enhanced%20ROS-based%20therapy%2C%20ferroptosis%2C%20and%20chemotherapy&journal=Biomaterials&doi=10.1016%2Fj.biomaterials.2021.121110&volume=277&publication_year=2021&author=Niu%2CB) 
  1. Muvhulawa, N. et al. Rutin ameliorates inflammation and improves metabolic function: a comprehensive analysis of scientific literature. Pharm. Res. 178, 106163 (2022).
[Article](https://doi.org/10.1016%2Fj.phrs.2022.106163)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhsVagurnP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Rutin%20ameliorates%20inflammation%20and%20improves%20metabolic%20function%3A%20a%20comprehensive%20analysis%20of%20scientific%20literature&journal=Pharm.%20Res.&doi=10.1016%2Fj.phrs.2022.106163&volume=178&publication_year=2022&author=Muvhulawa%2CN) 
  1. Negahdari, R. et al. Therapeutic benefits of rutin and its nanoformulations. Phytother. Res. 35, 1719–1738 (2021).
[Article](https://doi.org/10.1002%2Fptr.6904)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33058407)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXos1Klt7w%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Therapeutic%20benefits%20of%20rutin%20and%20its%20nanoformulations&journal=Phytother.%20Res.&doi=10.1002%2Fptr.6904&volume=35&pages=1719-1738&publication_year=2021&author=Negahdari%2CR) 
  1. Feng, W. et al. Melanin-like nanoparticles alleviate ischemia-reperfusion injury in the kidney by scavenging reactive oxygen species and inhibiting ferroptosis. iScience 27, 109504 (2024).
[Article](https://doi.org/10.1016%2Fj.isci.2024.109504)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38632989)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022057)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXht1aiur7I)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Melanin-like%20nanoparticles%20alleviate%20ischemia-reperfusion%20injury%20in%20the%20kidney%20by%20scavenging%20reactive%20oxygen%20species%20and%20inhibiting%20ferroptosis&journal=iScience&doi=10.1016%2Fj.isci.2024.109504&volume=27&publication_year=2024&author=Feng%2CW) 
  1. Zhang, Y. et al. Targeting ferroptosis by polydopamine nanoparticles protects heart against ischemia/reperfusion injury. ACS Appl. Mater. Interfaces 13, 53671–53682 (2021).
[Article](https://doi.org/10.1021%2Facsami.1c18061)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34730938)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXitlygs7jJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20ferroptosis%20by%20polydopamine%20nanoparticles%20protects%20heart%20against%20ischemia%2Freperfusion%20injury&journal=ACS%20Appl.%20Mater.%20Interfaces&doi=10.1021%2Facsami.1c18061&volume=13&pages=53671-53682&publication_year=2021&author=Zhang%2CY) 
  1. Yao, S. et al. Mesenchymal stem cell attenuates spinal cord injury by inhibiting mitochondrial quality control-associated neuronal ferroptosis. Redox Biol. 67, 102871 (2023).
[Article](https://doi.org/10.1016%2Fj.redox.2023.102871)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37699320)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10506061)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvVyhtbjM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mesenchymal%20stem%20cell%20attenuates%20spinal%20cord%20injury%20by%20inhibiting%20mitochondrial%20quality%20control-associated%20neuronal%20ferroptosis&journal=Redox%20Biol.&doi=10.1016%2Fj.redox.2023.102871&volume=67&publication_year=2023&author=Yao%2CS) 
  1. Hua, R. et al. ROS-responsive nanoparticle delivery of ferroptosis inhibitor prodrug to facilitate mesenchymal stem cell-mediated spinal cord injury repair. Bioact. Mater. 38, 438–454 (2024).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38770428)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11103787)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhtFehtb3F)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ROS-responsive%20nanoparticle%20delivery%20of%20ferroptosis%20inhibitor%20prodrug%20to%20facilitate%20mesenchymal%20stem%20cell-mediated%20spinal%20cord%20injury%20repair&journal=Bioact.%20Mater.&volume=38&pages=438-454&publication_year=2024&author=Hua%2CR) 
  1. Feng, Y. D. et al. Old targets, new strategy: apigenin-7-O-beta-d-(-6”-p-coumaroyl)-glucopyranoside prevents endothelial ferroptosis and alleviates intestinal ischemia-reperfusion injury through HO-1 and MAO-B inhibition. Free Radic. Biol. Med. 184, 74–88 (2022).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2022.03.033)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35398494)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xps1Gjsrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Old%20targets%2C%20new%20strategy%3A%20apigenin-7-O-beta-d-%28-6%E2%80%9D-p-coumaroyl%29-glucopyranoside%20prevents%20endothelial%20ferroptosis%20and%20alleviates%20intestinal%20ischemia-reperfusion%20injury%20through%20HO-1%20and%20MAO-B%20inhibition&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2022.03.033&volume=184&pages=74-88&publication_year=2022&author=Feng%2CYD) 
  1. Zhao, X. et al. Apigenin-7-glucoside-loaded nanoparticle alleviates intestinal ischemia-reperfusion by ATF3/SLC7A11-mediated ferroptosis. J. Control Release 366, 182–193 (2024).
[Article](https://doi.org/10.1016%2Fj.jconrel.2023.12.038)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38145659)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXhtVCqsw%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Apigenin-7-glucoside-loaded%20nanoparticle%20alleviates%20intestinal%20ischemia-reperfusion%20by%20ATF3%2FSLC7A11-mediated%20ferroptosis&journal=J.%20Control%20Release&doi=10.1016%2Fj.jconrel.2023.12.038&volume=366&pages=182-193&publication_year=2024&author=Zhao%2CX) 
  1. Katz, J. N., Arant, K. R. & Loeser, R. F. Diagnosis and treatment of hip and knee osteoarthritis: a review. JAMA 325, 568–578 (2021).
[Article](https://doi.org/10.1001%2Fjama.2020.22171)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33560326)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8225295)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXjvV2rsL4%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Diagnosis%20and%20treatment%20of%20hip%20and%20knee%20osteoarthritis%3A%20a%20review&journal=JAMA&doi=10.1001%2Fjama.2020.22171&volume=325&pages=568-578&publication_year=2021&author=Katz%2CJN&author=Arant%2CKR&author=Loeser%2CRF) 
  1. Yu, H. et al. Supramolecular self-assembly of EGCG-selenomethionine nanodrug for treating osteoarthritis. Bioact. Mater. 32, 164–176 (2024).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37822916)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitFGrt7jN)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Supramolecular%20self-assembly%20of%20EGCG-selenomethionine%20nanodrug%20for%20treating%20osteoarthritis&journal=Bioact.%20Mater.&volume=32&pages=164-176&publication_year=2024&author=Yu%2CH) 
  1. Lv, Z. et al. Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis. EBioMedicine 84, 104258 (2022).
[Article](https://doi.org/10.1016%2Fj.ebiom.2022.104258)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36137413)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9494174)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XisF2mt7bE)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Single%20cell%20RNA-seq%20analysis%20identifies%20ferroptotic%20chondrocyte%20cluster%20and%20reveals%20TRPV1%20as%20an%20anti-ferroptotic%20target%20in%20osteoarthritis&journal=EBioMedicine&doi=10.1016%2Fj.ebiom.2022.104258&volume=84&publication_year=2022&author=Lv%2CZ) 
  1. Li, W. et al. Near infrared responsive gold nanorods attenuate osteoarthritis progression by targeting TRPV1. Adv. Sci. 11, e2307683 (2024).
[Article](https://doi.org/10.1002%2Fadvs.202307683)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Near%20infrared%20responsive%20gold%20nanorods%20attenuate%20osteoarthritis%20progression%20by%20targeting%20TRPV1&journal=Adv.%20Sci.&doi=10.1002%2Fadvs.202307683&volume=11&publication_year=2024&author=Li%2CW) 
  1. Li, Y. et al. A DNA tetrahedron-based ferroptosis-suppressing nanoparticle: superior delivery of curcumin and alleviation of diabetic osteoporosis. Bone Res. 12, 14 (2024).
[Article](https://doi.org/10.1038%2Fs41413-024-00319-7)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38424439)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904802)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXkvFaqtr8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20DNA%20tetrahedron-based%20ferroptosis-suppressing%20nanoparticle%3A%20superior%20delivery%20of%20curcumin%20and%20alleviation%20of%20diabetic%20osteoporosis&journal=Bone%20Res.&doi=10.1038%2Fs41413-024-00319-7&volume=12&publication_year=2024&author=Li%2CY) 
  1. Rivella, S. Iron metabolism under conditions of ineffective erythropoiesis in beta-thalassemia. Blood 133, 51–58 (2019).
[Article](https://doi.org/10.1182%2Fblood-2018-07-815928)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30401707)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6318430)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXnt1OhsLg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20metabolism%20under%20conditions%20of%20ineffective%20erythropoiesis%20in%20beta-thalassemia&journal=Blood&doi=10.1182%2Fblood-2018-07-815928&volume=133&pages=51-58&publication_year=2019&author=Rivella%2CS) 
  1. Enns, C. A., Jue, S. & Zhang, A. S. The ectodomain of matriptase-2 plays an important nonproteolytic role in suppressing hepcidin expression in mice. Blood 136, 989–1001 (2020).
[Article](https://doi.org/10.1182%2Fblood.2020005222)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32384154)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7441170)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20ectodomain%20of%20matriptase-2%20plays%20an%20important%20nonproteolytic%20role%20in%20suppressing%20hepcidin%20expression%20in%20mice&journal=Blood&doi=10.1182%2Fblood.2020005222&volume=136&pages=989-1001&publication_year=2020&author=Enns%2CCA&author=Jue%2CS&author=Zhang%2CAS) 
  1. Nai, A. et al. Deletion of TMPRSS6 attenuates the phenotype in a mouse model of beta-thalassemia. Blood 119, 5021–5029 (2012).
[Article](https://doi.org/10.1182%2Fblood-2012-01-401885)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22490684)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3426375)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XotFOgtbw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deletion%20of%20TMPRSS6%20attenuates%20the%20phenotype%20in%20a%20mouse%20model%20of%20beta-thalassemia&journal=Blood&doi=10.1182%2Fblood-2012-01-401885&volume=119&pages=5021-5029&publication_year=2012&author=Nai%2CA) 
  1. Schmidt, P. J. et al. An RNAi therapeutic targeting Tmprss6 decreases iron overload in Hfe(-/-) mice and ameliorates anemia and iron overload in murine beta-thalassemia intermedia. Blood 121, 1200–1208 (2013).
[Article](https://doi.org/10.1182%2Fblood-2012-09-453977)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23223430)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3655736)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXjt1WhsLg%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=An%20RNAi%20therapeutic%20targeting%20Tmprss6%20decreases%20iron%20overload%20in%20Hfe%28-%2F-%29%20mice%20and%20ameliorates%20anemia%20and%20iron%20overload%20in%20murine%20beta-thalassemia%20intermedia&journal=Blood&doi=10.1182%2Fblood-2012-09-453977&volume=121&pages=1200-1208&publication_year=2013&author=Schmidt%2CPJ) 
  1. Debacker, A. J. et al. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic drug. Mol. Ther. 28, 1759–1771 (2020).
[Article](https://doi.org/10.1016%2Fj.ymthe.2020.06.015)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32592692)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7403466)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsFKgsbbP)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Delivery%20of%20oligonucleotides%20to%20the%20liver%20with%20GalNAc%3A%20from%20research%20to%20registered%20therapeutic%20drug&journal=Mol.%20Ther.&doi=10.1016%2Fj.ymthe.2020.06.015&volume=28&pages=1759-1771&publication_year=2020&author=Debacker%2CAJ) 
  1. Vadolas, J. et al. SLN124, a GalNac-siRNA targeting transmembrane serine protease 6, in combination with deferiprone therapy reduces ineffective erythropoiesis and hepatic iron-overload in a mouse model of beta-thalassaemia. Br. J. Haematol. 194, 200–210 (2021).
[Article](https://doi.org/10.1111%2Fbjh.17428)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33942901)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359948)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhslerur%2FK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=SLN124%2C%20a%20GalNac-siRNA%20targeting%20transmembrane%20serine%20protease%206%2C%20in%20combination%20with%20deferiprone%20therapy%20reduces%20ineffective%20erythropoiesis%20and%20hepatic%20iron-overload%20in%20a%20mouse%20model%20of%20beta-thalassaemia&journal=Br.%20J.%20Haematol.&doi=10.1111%2Fbjh.17428&volume=194&pages=200-210&publication_year=2021&author=Vadolas%2CJ) 
  1. Ying, Y. et al. A shear-thinning, ROS-scavenging hydrogel combined with dental pulp stem cells promotes spinal cord repair by inhibiting ferroptosis. Bioact. Mater. 22, 274–290 (2023).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36263097)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xis1yrtbbJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20shear-thinning%2C%20ROS-scavenging%20hydrogel%20combined%20with%20dental%20pulp%20stem%20cells%20promotes%20spinal%20cord%20repair%20by%20inhibiting%20ferroptosis&journal=Bioact.%20Mater.&volume=22&pages=274-290&publication_year=2023&author=Ying%2CY) 
  1. Zandi, N. et al. Nanoengineered shear-thinning and bioprintable hydrogel as a versatile platform for biomedical applications. Biomaterials 267, 120476 (2021).
[Article](https://doi.org/10.1016%2Fj.biomaterials.2020.120476)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33137603)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXit1OmsL%2FL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nanoengineered%20shear-thinning%20and%20bioprintable%20hydrogel%20as%20a%20versatile%20platform%20for%20biomedical%20applications&journal=Biomaterials&doi=10.1016%2Fj.biomaterials.2020.120476&volume=267&publication_year=2021&author=Zandi%2CN) 
  1. Zhao, T. et al. A triple-targeted rutin-based self-assembled delivery vector for treating ischemic stroke by vascular normalization and anti-inflammation via ACE2/Ang1-7 signaling. ACS Cent. Sci. 9, 1180–1199 (2023).
[Article](https://doi.org/10.1021%2Facscentsci.3c00377)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37396868)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10311651)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhtFektrbF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20triple-targeted%20rutin-based%20self-assembled%20delivery%20vector%20for%20treating%20ischemic%20stroke%20by%20vascular%20normalization%20and%20anti-inflammation%20via%20ACE2%2FAng1-7%20signaling&journal=ACS%20Cent.%20Sci.&doi=10.1021%2Facscentsci.3c00377&volume=9&pages=1180-1199&publication_year=2023&author=Zhao%2CT) 
  1. Li, C. et al. Pleiotropic microenvironment remodeling micelles for cerebral ischemia-reperfusion injury therapy by inhibiting neuronal ferroptosis and glial overactivation. ACS Nano 17, 18164–18177 (2023).
[Article](https://doi.org/10.1021%2Facsnano.3c05038)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37703316)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvV2gs7fL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pleiotropic%20microenvironment%20remodeling%20micelles%20for%20cerebral%20ischemia-reperfusion%20injury%20therapy%20by%20inhibiting%20neuronal%20ferroptosis%20and%20glial%20overactivation&journal=ACS%20Nano&doi=10.1021%2Facsnano.3c05038&volume=17&pages=18164-18177&publication_year=2023&author=Li%2CC) 
  1. Sun, X. et al. Escin avoids hemorrhagic transformation in ischemic stroke by protecting BBB through the AMPK/Cav-1/MMP-9 pathway. Phytomedicine 120, 155071 (2023).
[Article](https://doi.org/10.1016%2Fj.phymed.2023.155071)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37716034)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhvFCksLfO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Escin%20avoids%20hemorrhagic%20transformation%20in%20ischemic%20stroke%20by%20protecting%20BBB%20through%20the%20AMPK%2FCav-1%2FMMP-9%20pathway&journal=Phytomedicine&doi=10.1016%2Fj.phymed.2023.155071&volume=120&publication_year=2023&author=Sun%2CX) 
  1. Geng, Y. Q. et al. Alleviating recombinant tissue plasminogen activator-induced hemorrhagic transformation in ischemic stroke via targeted delivery of a ferroptosis inhibitor. Adv. Sci. 24, e2309517 (2024).
[Article](https://doi.org/10.1002%2Fadvs.202309517)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Alleviating%20recombinant%20tissue%20plasminogen%20activator-induced%20hemorrhagic%20transformation%20in%20ischemic%20stroke%20via%20targeted%20delivery%20of%20a%20ferroptosis%20inhibitor&journal=Adv.%20Sci.&doi=10.1002%2Fadvs.202309517&volume=24&publication_year=2024&author=Geng%2CYQ) 
  1. Wang, Y. et al. Anti-ferroptosis exosomes engineered for targeting M2 microglia to improve neurological function in ischemic stroke. J. Nanobiotechnol. 22, 291 (2024).
[Article](https://link.springer.com/doi/10.1186/s12951-024-02560-y)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXht1CktrjM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Anti-ferroptosis%20exosomes%20engineered%20for%20targeting%20M2%20microglia%20to%20improve%20neurological%20function%20in%20ischemic%20stroke&journal=J.%20Nanobiotechnol.&doi=10.1186%2Fs12951-024-02560-y&volume=22&publication_year=2024&author=Wang%2CY) 
  1. Liu, H. T. et al. Effects of coenzyme Q10 supplementation on antioxidant capacity and inflammation in hepatocellular carcinoma patients after surgery: a randomized, placebo-controlled trial. Nutr. J. 15, 85 (2016).
[Article](https://link.springer.com/doi/10.1186/s12937-016-0205-6)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27716246)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053088)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effects%20of%20coenzyme%20Q10%20supplementation%20on%20antioxidant%20capacity%20and%20inflammation%20in%20hepatocellular%20carcinoma%20patients%20after%20surgery%3A%20a%20randomized%2C%20placebo-controlled%20trial&journal=Nutr.%20J.&doi=10.1186%2Fs12937-016-0205-6&volume=15&publication_year=2016&author=Liu%2CHT) 
  1. D’Amico, F. et al. Use of N-acetylcysteine during liver procurement: a prospective randomized controlled study. Liver Transpl. 19, 135–144 (2013).
[Article](https://doi.org/10.1002%2Flt.23527)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22859317)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Use%20of%20N-acetylcysteine%20during%20liver%20procurement%3A%20a%20prospective%20randomized%20controlled%20study&journal=Liver%20Transpl.&doi=10.1002%2Flt.23527&volume=19&pages=135-144&publication_year=2013&author=D%E2%80%99Amico%2CF) 
  1. Lee, W. M. et al. Intravenous N-acetylcysteine improves transplant-free survival in early stage non-acetaminophen acute liver failure. Gastroenterology 137, 856–64, (2009).
[Article](https://doi.org/10.1053%2Fj.gastro.2009.06.006)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19524577)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhtF2isrbJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Intravenous%20N-acetylcysteine%20improves%20transplant-free%20survival%20in%20early%20stage%20non-acetaminophen%20acute%20liver%20failure&journal=Gastroenterology&doi=10.1053%2Fj.gastro.2009.06.006&volume=137&pages=856-64%2C&publication_year=2009&author=Lee%2CWM) 
  1. Berwanger, O. et al. Acetylcysteine for the prevention of renal outcomes in patients with diabetes mellitus undergoing coronary and peripheral vascular angiography: a substudy of the acetylcysteine for contrast-induced nephropathy trial. Circ. Cardiovasc Inter. 6, 139–145 (2013).
[Article](https://doi.org/10.1161%2FCIRCINTERVENTIONS.112.000149)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXmtlaiurY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Acetylcysteine%20for%20the%20prevention%20of%20renal%20outcomes%20in%20patients%20with%20diabetes%20mellitus%20undergoing%20coronary%20and%20peripheral%20vascular%20angiography%3A%20a%20substudy%20of%20the%20acetylcysteine%20for%20contrast-induced%20nephropathy%20trial&journal=Circ.%20Cardiovasc%20Inter.&doi=10.1161%2FCIRCINTERVENTIONS.112.000149&volume=6&pages=139-145&publication_year=2013&author=Berwanger%2CO) 
  1. Li, N. & Zhou, H. SGLT2 inhibitors: a novel player in the treatment and prevention of diabetic cardiomyopathy. Drug Des. Dev.Ther. 14, 4775–4788 (2020).
[Article](https://doi.org/10.2147%2FDDDT.S269514)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXjsVSrt7o%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=SGLT2%20inhibitors%3A%20a%20novel%20player%20in%20the%20treatment%20and%20prevention%20of%20diabetic%20cardiomyopathy&journal=Drug%20Des.%20Dev.Ther.&doi=10.2147%2FDDDT.S269514&volume=14&pages=4775-4788&publication_year=2020&author=Li%2CN&author=Zhou%2CH) 
  1. Elalfy, M. S. et al. Efficacy and safety of early-start deferiprone in infants and young children with transfusion-dependent beta thalassemia: evidence for iron shuttling to transferrin in a randomized, double-blind, placebo-controlled, clinical trial (START). Am. J. Hematol. 98, 1415–1424 (2023).
[Article](https://doi.org/10.1002%2Fajh.27010)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37401738)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVegsrjM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Efficacy%20and%20safety%20of%20early-start%20deferiprone%20in%20infants%20and%20young%20children%20with%20transfusion-dependent%20beta%20thalassemia%3A%20evidence%20for%20iron%20shuttling%20to%20transferrin%20in%20a%20randomized%2C%20double-blind%2C%20placebo-controlled%2C%20clinical%20trial%20%28START%29&journal=Am.%20J.%20Hematol.&doi=10.1002%2Fajh.27010&volume=98&pages=1415-1424&publication_year=2023&author=Elalfy%2CMS) 
  1. Hamdy, M. et al. Deferiprone versus deferoxamine for transfusional iron overload in sickle cell disease and other anemias: pediatric subgroup analysis of the randomized, open-label FIRST study. Pediatr. Blood Cancer 71, e30711 (2024).
[Article](https://doi.org/10.1002%2Fpbc.30711)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37807937)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitFKltrbI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deferiprone%20versus%20deferoxamine%20for%20transfusional%20iron%20overload%20in%20sickle%20cell%20disease%20and%20other%20anemias%3A%20pediatric%20subgroup%20analysis%20of%20the%20randomized%2C%20open-label%20FIRST%20study&journal=Pediatr.%20Blood%20Cancer&doi=10.1002%2Fpbc.30711&volume=71&publication_year=2024&author=Hamdy%2CM) 
  1. Calvaruso, G. et al. Deferiprone versus deferoxamine in thalassemia intermedia: results from a 5-year long-term Italian multicenter randomized clinical trial. Am. J. Hematol. 90, 634–638 (2015).
[Article](https://doi.org/10.1002%2Fajh.24024)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25809173)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhtVOnu7zK)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deferiprone%20versus%20deferoxamine%20in%20thalassemia%20intermedia%3A%20results%20from%20a%205-year%20long-term%20Italian%20multicenter%20randomized%20clinical%20trial&journal=Am.%20J.%20Hematol.&doi=10.1002%2Fajh.24024&volume=90&pages=634-638&publication_year=2015&author=Calvaruso%2CG) 
  1. Pennell, D. J. et al. A 1-year randomized controlled trial of deferasirox vs deferoxamine for myocardial iron removal in beta-thalassemia major (CORDELIA). Blood 123, 1447–1454 (2014).
[Article](https://doi.org/10.1182%2Fblood-2013-04-497842)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24385534)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3945858)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXktlOns7o%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%201-year%20randomized%20controlled%20trial%20of%20deferasirox%20vs%20deferoxamine%20for%20myocardial%20iron%20removal%20in%20beta-thalassemia%20major%20%28CORDELIA%29&journal=Blood&doi=10.1182%2Fblood-2013-04-497842&volume=123&pages=1447-1454&publication_year=2014&author=Pennell%2CDJ) 
  1. Maggio, A. et al. Evaluation of the efficacy and safety of deferiprone compared with deferasirox in paediatric patients with transfusion-dependent haemoglobinopathies (DEEP-2): a multicentre, randomised, open-label, non-inferiority, phase 3 trial. Lancet Haematol. 7, e469–e478 (2020).
[Article](https://doi.org/10.1016%2FS2352-3026%2820%2930100-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32470438)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Evaluation%20of%20the%20efficacy%20and%20safety%20of%20deferiprone%20compared%20with%20deferasirox%20in%20paediatric%20patients%20with%20transfusion-dependent%20haemoglobinopathies%20%28DEEP-2%29%3A%20a%20multicentre%2C%20randomised%2C%20open-label%2C%20non-inferiority%2C%20phase%203%20trial&journal=Lancet%20Haematol.&doi=10.1016%2FS2352-3026%2820%2930100-9&volume=7&pages=e469-e478&publication_year=2020&author=Maggio%2CA) 
  1. Sarocchi, M. et al. Cardiac effects of deferasirox in transfusion-dependent patients with myelodysplastic syndromes: TELESTO study. Br. J. Haematol. 204, 2049–2056 (2024).
[Article](https://doi.org/10.1111%2Fbjh.19316)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38343073)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXjs1Siur8%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cardiac%20effects%20of%20deferasirox%20in%20transfusion-dependent%20patients%20with%20myelodysplastic%20syndromes%3A%20TELESTO%20study&journal=Br.%20J.%20Haematol.&doi=10.1111%2Fbjh.19316&volume=204&pages=2049-2056&publication_year=2024&author=Sarocchi%2CM) 
  1. Maggio, A. et al. Long-term use of deferiprone significantly enhances left-ventricular ejection function in thalassemia major patients. Am. J. Hematol. 87, 732–733 (2012).
[Article](https://doi.org/10.1002%2Fajh.23219)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22622672)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Long-term%20use%20of%20deferiprone%20significantly%20enhances%20left-ventricular%20ejection%20function%20in%20thalassemia%20major%20patients&journal=Am.%20J.%20Hematol.&doi=10.1002%2Fajh.23219&volume=87&pages=732-733&publication_year=2012&author=Maggio%2CA) 
  1. Fernandes, J. L. et al. Amlodipine reduces cardiac iron overload in patients with thalassemia major: a pilot trial. Am. J. Med. 126, 834–837 (2013).
[Article](https://doi.org/10.1016%2Fj.amjmed.2013.05.002)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23830536)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhtVKqsLvO)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Amlodipine%20reduces%20cardiac%20iron%20overload%20in%20patients%20with%20thalassemia%20major%3A%20a%20pilot%20trial&journal=Am.%20J.%20Med.&doi=10.1016%2Fj.amjmed.2013.05.002&volume=126&pages=834-837&publication_year=2013&author=Fernandes%2CJL) 
  1. Richard, F. et al. Oral ferroportin inhibitor VIT-2763: first-in-human, phase 1 study in healthy volunteers. Am. J. Hematol. 95, 68–77 (2020).
[Article](https://doi.org/10.1002%2Fajh.25670)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31674058)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXkvVemuw%3D%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oral%20ferroportin%20inhibitor%20VIT-2763%3A%20first-in-human%2C%20phase%201%20study%20in%20healthy%20volunteers&journal=Am.%20J.%20Hematol.&doi=10.1002%2Fajh.25670&volume=95&pages=68-77&publication_year=2020&author=Richard%2CF) 
  1. Vidart, J. et al. N-acetylcysteine administration prevents nonthyroidal illness syndrome in patients with acute myocardial infarction: a randomized clinical trial. J. Clin. Endocrinol. Metab. 99, 4537–4545 (2014).
[Article](https://doi.org/10.1210%2Fjc.2014-2192)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25148231)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4255112)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXitFalsbjM)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=N-acetylcysteine%20administration%20prevents%20nonthyroidal%20illness%20syndrome%20in%20patients%20with%20acute%20myocardial%20infarction%3A%20a%20randomized%20clinical%20trial&journal=J.%20Clin.%20Endocrinol.%20Metab.&doi=10.1210%2Fjc.2014-2192&volume=99&pages=4537-4545&publication_year=2014&author=Vidart%2CJ) 
  1. Marian, A. J. et al. Hypertrophy regression with N-acetylcysteine in hypertrophic cardiomyopathy (HALT-HCM): a randomized, placebo-controlled, double-blind pilot study. Circ. Res. 122, 1109–1118 (2018).
[Article](https://doi.org/10.1161%2FCIRCRESAHA.117.312647)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29540445)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5899034)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXnsVGnurc%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hypertrophy%20regression%20with%20N-acetylcysteine%20in%20hypertrophic%20cardiomyopathy%20%28HALT-HCM%29%3A%20a%20randomized%2C%20placebo-controlled%2C%20double-blind%20pilot%20study&journal=Circ.%20Res.&doi=10.1161%2FCIRCRESAHA.117.312647&volume=122&pages=1109-1118&publication_year=2018&author=Marian%2CAJ) 
  1. Lee, B. J., Tseng, Y. F., Yen, C. H. & Lin, P. T. Effects of coenzyme Q10 supplementation (300 mg/day) on antioxidation and anti-inflammation in coronary artery disease patients during statins therapy: a randomized, placebo-controlled trial. Nutr. J. 12, 142 (2013).
[Article](https://link.springer.com/doi/10.1186/1475-2891-12-142)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24192015)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4176102)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effects%20of%20coenzyme%20Q10%20supplementation%20%28300%20mg%2Fday%29%20on%20antioxidation%20and%20anti-inflammation%20in%20coronary%20artery%20disease%20patients%20during%20statins%20therapy%3A%20a%20randomized%2C%20placebo-controlled%20trial&journal=Nutr.%20J.&doi=10.1186%2F1475-2891-12-142&volume=12&publication_year=2013&author=Lee%2CBJ&author=Tseng%2CYF&author=Yen%2CCH&author=Lin%2CPT) 
  1. Foster, L. et al. Effect of deferoxamine on trajectory of recovery after intracerebral hemorrhage: a post hoc analysis of the i-DEF trial. Stroke 53, 2204–2210 (2022).
[Article](https://doi.org/10.1161%2FSTROKEAHA.121.037298)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35306827)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9246960)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhvVaiur%2FF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effect%20of%20deferoxamine%20on%20trajectory%20of%20recovery%20after%20intracerebral%20hemorrhage%3A%20a%20post%20hoc%20analysis%20of%20the%20i-DEF%20trial&journal=Stroke&doi=10.1161%2FSTROKEAHA.121.037298&volume=53&pages=2204-2210&publication_year=2022&author=Foster%2CL) 
  1. Wei, C. et al. Effect of deferoxamine on outcome according to baseline hematoma volume: a post hoc analysis of the i-DEF trial. Stroke 53, 1149–1156 (2022).
[Article](https://doi.org/10.1161%2FSTROKEAHA.121.035421)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34789008)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XotlCgtr0%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effect%20of%20deferoxamine%20on%20outcome%20according%20to%20baseline%20hematoma%20volume%3A%20a%20post%20hoc%20analysis%20of%20the%20i-DEF%20trial&journal=Stroke&doi=10.1161%2FSTROKEAHA.121.035421&volume=53&pages=1149-1156&publication_year=2022&author=Wei%2CC) 
  1. Selim, M. et al. Deferoxamine mesylate in patients with intracerebral haemorrhage (i-DEF): a multicentre, randomised, placebo-controlled, double-blind phase 2 trial. Lancet Neurol. 18, 428–438 (2019).
[Article](https://doi.org/10.1016%2FS1474-4422%2819%2930069-9)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30898550)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6494117)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXlvV2msbo%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deferoxamine%20mesylate%20in%20patients%20with%20intracerebral%20haemorrhage%20%28i-DEF%29%3A%20a%20multicentre%2C%20randomised%2C%20placebo-controlled%2C%20double-blind%20phase%202%20trial&journal=Lancet%20Neurol.&doi=10.1016%2FS1474-4422%2819%2930069-9&volume=18&pages=428-438&publication_year=2019&author=Selim%2CM) 
  1. Sorond, F. A. et al. Deferoxamine, cerebrovascular hemodynamics, and vascular aging: potential role for hypoxia-inducible transcription factor-1-regulated pathways. Stroke 46, 2576–2583 (2015).
[Article](https://doi.org/10.1161%2FSTROKEAHA.115.009906)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26304864)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551113)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXhsVSru7jL)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deferoxamine%2C%20cerebrovascular%20hemodynamics%2C%20and%20vascular%20aging%3A%20potential%20role%20for%20hypoxia-inducible%20transcription%20factor-1-regulated%20pathways&journal=Stroke&doi=10.1161%2FSTROKEAHA.115.009906&volume=46&pages=2576-2583&publication_year=2015&author=Sorond%2CFA) 
  1. Devos, D. et al. Trial of deferiprone in Parkinson’s disease. N. Engl. J. Med. 387, 2045–2055 (2022).
[Article](https://doi.org/10.1056%2FNEJMoa2209254)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36449420)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XjtFahtLfJ)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Trial%20of%20deferiprone%20in%20Parkinson%E2%80%99s%20disease&journal=N.%20Engl.%20J.%20Med.&doi=10.1056%2FNEJMoa2209254&volume=387&pages=2045-2055&publication_year=2022&author=Devos%2CD) 
  1. Pilotto, F., Chellapandi, D. M. & Puccio, H. Omaveloxolone: a groundbreaking milestone as the first FDA-approved drug for Friedreich ataxia. Trends Mol. Med. 30, 117–125 (2024).
[Article](https://doi.org/10.1016%2Fj.molmed.2023.12.002)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38272714)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXisVSktbk%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Omaveloxolone%3A%20a%20groundbreaking%20milestone%20as%20the%20first%20FDA-approved%20drug%20for%20Friedreich%20ataxia&journal=Trends%20Mol.%20Med.&doi=10.1016%2Fj.molmed.2023.12.002&volume=30&pages=117-125&publication_year=2024&author=Pilotto%2CF&author=Chellapandi%2CDM&author=Puccio%2CH) 
  1. Wang, Y. et al. A membrane-targeting aggregation-induced emission probe for monitoring lipid droplet dynamics in ischemia/reperfusion-induced cardiomyocyte ferroptosis. Adv. Sci. 11, e2309907 (2024).
[Article](https://doi.org/10.1002%2Fadvs.202309907)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20membrane-targeting%20aggregation-induced%20emission%20probe%20for%20monitoring%20lipid%20droplet%20dynamics%20in%20ischemia%2Freperfusion-induced%20cardiomyocyte%20ferroptosis&journal=Adv.%20Sci.&doi=10.1002%2Fadvs.202309907&volume=11&publication_year=2024&author=Wang%2CY) 
  1. Li, L. et al. Dual ratio and ultraprecision quantification of mitochondrial viscosity in ferroptosis enabled by a vibration-based triple-emission fluorescent probe. Anal. Chem. 95, 17003–17010 (2023).
[Article](https://doi.org/10.1021%2Facs.analchem.3c03541)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37942555)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXitlSjt7nI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dual%20ratio%20and%20ultraprecision%20quantification%20of%20mitochondrial%20viscosity%20in%20ferroptosis%20enabled%20by%20a%20vibration-based%20triple-emission%20fluorescent%20probe&journal=Anal.%20Chem.&doi=10.1021%2Facs.analchem.3c03541&volume=95&pages=17003-17010&publication_year=2023&author=Li%2CL) 
  1. Tan, M. et al. Targeted mitochondrial fluorescence probe with large stokes shift for detecting viscosity changes in vivo and in ferroptosis process. Spectrochim. Acta A Mol. Biomol. Spectrosc. 315, 124246 (2024).
[Article](https://doi.org/10.1016%2Fj.saa.2024.124246)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38593540)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXotVWltro%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeted%20mitochondrial%20fluorescence%20probe%20with%20large%20stokes%20shift%20for%20detecting%20viscosity%20changes%20in%20vivo%20and%20in%20ferroptosis%20process&journal=Spectrochim.%20Acta%20A%20Mol.%20Biomol.%20Spectrosc.&doi=10.1016%2Fj.saa.2024.124246&volume=315&publication_year=2024&author=Tan%2CM) 
  1. Yin, J. et al. Investigating the therapeutic effects of ferroptosis on myocardial ischemia-reperfusion injury using a dual-locking mitochondrial targeting strategy. Angew. Chem. Int. Ed. Engl. 63, e202402537 (2024).
[Article](https://doi.org/10.1002%2Fanie.202402537)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38509827)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXpsVWgsrs%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Investigating%20the%20therapeutic%20effects%20of%20ferroptosis%20on%20myocardial%20ischemia-reperfusion%20injury%20using%20a%20dual-locking%20mitochondrial%20targeting%20strategy&journal=Angew.%20Chem.%20Int.%20Ed.%20Engl.&doi=10.1002%2Fanie.202402537&volume=63&publication_year=2024&author=Yin%2CJ) 
  1. Luo, X. et al. A near-infrared light-activated nanoprobe for simultaneous detection of hydrogen polysulfide and sulfur dioxide in myocardial ischemia-reperfusion injury. Chem. Sci. 14, 14290–14301 (2023).
[Article](https://doi.org/10.1039%2FD3SC04937J)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38098706)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10718178)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXisVyqtbrI)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20near-infrared%20light-activated%20nanoprobe%20for%20simultaneous%20detection%20of%20hydrogen%20polysulfide%20and%20sulfur%20dioxide%20in%20myocardial%20ischemia-reperfusion%20injury&journal=Chem.%20Sci.&doi=10.1039%2FD3SC04937J&volume=14&pages=14290-14301&publication_year=2023&author=Luo%2CX) 
  1. Yang, W. et al. Quantitative visualization of myocardial ischemia-reperfusion-induced cardiac lesions via ferroptosis magnetic particle imaging. Theranostics 14, 1081–1097 (2024).
[Article](https://doi.org/10.7150%2Fthno.89190)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=38250046)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10797296)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB2cXjt1ajsrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Quantitative%20visualization%20of%20myocardial%20ischemia-reperfusion-induced%20cardiac%20lesions%20via%20ferroptosis%20magnetic%20particle%20imaging&journal=Theranostics&doi=10.7150%2Fthno.89190&volume=14&pages=1081-1097&publication_year=2024&author=Yang%2CW) 

Page 2

Mitochondrial viscosity

Myocardial I/R injury

Viscosity influences protein-protein interactions in mitochondrial membranes and is associated with various diseases. Mitochondrial viscosity increases during ferroptosis. The fluorescence probe PPAC-C4 is used for ultra-precision quantification of mitochondrial viscosity by attaching mitochondrial-targeting cation fragments to a vibration-based fluorescent scaffold. The probe Mito-3, containing a cationic quinoline unit and a C12 chain, can be used to locate and monitor changes in intracellular mitochondrial viscosity at close range by near infrared fluorescence.

The probe CBS, based on the docking of electrostatic force and prop-protein molecules, achieves stable and accurate detection of mitochondrial viscosity.

Resumir
这篇文章综述了铁死亡(ferroptosis)的最新研究进展,回顾了其机制、生理功能及治疗应用。铁死亡是一种新型的细胞死亡方式,涉及铁离子和脂质过氧化物的积累。文章指出,铁死亡在多种疾病中扮演重要角色,包括癌症、神经退行性疾病和心血管疾病。研究者们探讨了铁死亡的信号通路及其与细胞代谢的关系,强调了其在疾病治疗中的潜力。此外,文章还讨论了铁死亡的检测方法及其在临床应用中的前景。通过对铁死亡的深入理解,未来可能开发出新的治疗策略,以改善相关疾病的预后。