Stream of Search (SoS): Learning to Search in Language

contente

1:Input: An initial policy parameter πi⁢n⁢i⁢tsubscript𝜋𝑖𝑛𝑖𝑡\pi_{init}italic_π start_POSTSUBSCRIPT italic_i italic_n italic_i italic_t end_POSTSUBSCRIPT, a given reward function R𝑅Ritalic_R, Advantage coefficient λ𝜆\lambdaitalic_λ.

traduzindo...

2:π0←πi⁢n⁢i⁢t←subscript𝜋0subscript𝜋𝑖𝑛𝑖𝑡\pi_{0}\leftarrow\pi_{init}italic_π start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ← italic_π start_POSTSUBSCRIPT italic_i italic_n italic_i italic_t end_POSTSUBSCRIPT

traduzindo...

3:πr⁢e⁢f←πi⁢n⁢i⁢t←subscript𝜋𝑟𝑒𝑓subscript𝜋𝑖𝑛𝑖𝑡\pi_{ref}\leftarrow\pi_{init}italic_π start_POSTSUBSCRIPT italic_r italic_e italic_f end_POSTSUBSCRIPT ← italic_π start_POSTSUBSCRIPT italic_i italic_n italic_i italic_t end_POSTSUBSCRIPT ▷▷\triangleright▷ Copy the SoS model to create a reference network.

traduzindo...

4:πv⁢a⁢l⁢u⁢e←πi⁢n⁢i⁢t←subscript𝜋𝑣𝑎𝑙𝑢𝑒subscript𝜋𝑖𝑛𝑖𝑡\pi_{value}\leftarrow\pi_{init}italic_π start_POSTSUBSCRIPT italic_v italic_a italic_l italic_u italic_e end_POSTSUBSCRIPT ← italic_π start_POSTSUBSCRIPT italic_i italic_n italic_i italic_t end_POSTSUBSCRIPT ▷▷\triangleright▷ Copy the SoS model to create a value network.

traduzindo...

5:for t𝑡titalic_t in 1⁢…⁢T1…𝑇1\ldots T1 … italic_T do

traduzindo...

6:     Roll out πθt−1subscript𝜋subscript𝜃𝑡1\pi_{\theta_{t-1}}italic_π start_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT to produce dataset Dt={(s1(t),a1(t),r1(t)),⋯,(sn(t),an(t),rn(t))}subscript𝐷𝑡subscriptsuperscript𝑠𝑡1subscriptsuperscript𝑎𝑡1subscriptsuperscript𝑟𝑡1⋯subscriptsuperscript𝑠𝑡𝑛subscriptsuperscript𝑎𝑡𝑛subscriptsuperscript𝑟𝑡𝑛D_{t}=\{(s^{(t)}_{1},a^{(t)}_{1},r^{(t)}_{1}),\cdots,(s^{(t)}_{n},a^{(t)}_{n},% r^{(t)}_{n})\}italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = { ( italic_s start_POSTSUPERSCRIPT ( italic_t ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_a start_POSTSUPERSCRIPT ( italic_t ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_r start_POSTSUPERSCRIPT ( italic_t ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , ⋯ , ( italic_s start_POSTSUPERSCRIPT ( italic_t ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_a start_POSTSUPERSCRIPT ( italic_t ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT , italic_r start_POSTSUPERSCRIPT ( italic_t ) end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) }

traduzindo...

7:     Update policy function according to

traduzindo...

8:               θt=arg⁡maxθ⁡ℒA⁢P⁢A⁢(θ;Dt)subscript𝜃𝑡subscript𝜃subscriptℒ𝐴𝑃𝐴𝜃subscript𝐷𝑡\theta_{t}=\arg\max_{\theta}\mathcal{L}_{APA}(\theta;D_{t})italic_θ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT = roman_arg roman_max start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT caligraphic_L start_POSTSUBSCRIPT italic_A italic_P italic_A end_POSTSUBSCRIPT ( italic_θ ; italic_D start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT ). ▷▷\triangleright▷ We omit the critic loss for simplicity

traduzindo...

9:     where

traduzindo...

10:               ℒA⁢P⁢A⁢(θ;D)=1|D|⁢∑(s,a)∈D(log⁡πθ⁢(a|s)−A⁢d⁢vπθt−1⁢(s,a)λ−log⁡πr⁢e⁢f⁢(a|s))2subscriptℒ𝐴𝑃𝐴𝜃𝐷1𝐷subscript𝑠𝑎𝐷superscriptsubscript𝜋𝜃conditional𝑎𝑠𝐴𝑑superscript𝑣subscript𝜋subscript𝜃𝑡1𝑠𝑎𝜆subscript𝜋𝑟𝑒𝑓conditional𝑎𝑠2\mathcal{L}_{APA}(\theta;D)=\frac{1}{|D|}\sum_{(s,a)\in D}\big{(}\log\pi_{% \theta}(a|s)-\frac{Adv^{\pi_{\theta_{t-1}}}(s,a)}{\lambda}-\log\pi_{ref}(a|s)% \big{)}^{2}caligraphic_L start_POSTSUBSCRIPT italic_A italic_P italic_A end_POSTSUBSCRIPT ( italic_θ ; italic_D ) = divide start_ARG 1 end_ARG start_ARG | italic_D | end_ARG ∑ start_POSTSUBSCRIPT ( italic_s , italic_a ) ∈ italic_D end_POSTSUBSCRIPT ( roman_log italic_π start_POSTSUBSCRIPT italic_θ end_POSTSUBSCRIPT ( italic_a | italic_s ) - divide start_ARG italic_A italic_d italic_v start_POSTSUPERSCRIPT italic_π start_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT italic_t - 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ( italic_s , italic_a ) end_ARG start_ARG italic_λ end_ARG - roman_log italic_π start_POSTSUBSCRIPT italic_r italic_e italic_f end_POSTSUBSCRIPT ( italic_a | italic_s ) ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT.

traduzindo...

11:     If validation reward converges, update πr⁢e⁢fsubscript𝜋𝑟𝑒𝑓\pi_{ref}italic_π start_POSTSUBSCRIPT italic_r italic_e italic_f end_POSTSUBSCRIPT

traduzindo...

12:               πr⁢e⁢f←πθt←subscript𝜋𝑟𝑒𝑓subscript𝜋subscript𝜃𝑡\pi_{ref}\leftarrow\pi_{\theta_{t}}italic_π start_POSTSUBSCRIPT italic_r italic_e italic_f end_POSTSUBSCRIPT ← italic_π start_POSTSUBSCRIPT italic_θ start_POSTSUBSCRIPT italic_t end_POSTSUBSCRIPT end_POSTSUBSCRIPT

traduzindo...

13:end for

traduzindo...