Determine all real numbers \alpha
such that, for every positive integer n
, the integer \lfloor \alpha\rfloor + \lfloor2\alpha\rfloor + \cdots + \lfloor n\alpha\rfloor
is a multiple of n
. (Note that \lfloor z\rfloor
denotes the greatest integer less than or equal to z
. For example, \lfloor-\pi\rfloor = -4
and \lfloor2\rfloor = \lfloor2.9\rfloor = 2
.)
Solution: \alpha
is an even integer.
⊢ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋} = {α | ∃ k, Even k ∧ α = ↑k}
rw [(Set.Subset.antisymm_iff ), (Set.subset_def), ]
⊢ (∀ x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}, x ∈ {α | ∃ k, Even k ∧ α = ↑k}) ∧ {α | ∃ k, Even k ∧ α = ↑k} ⊆ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
/- We introduce a variable that will be used in the second part of the proof (the hard direction), namely the integer l
such that 2l = ⌊α⌋ + ⌊2α⌋
(this comes from the given divisibility condition with n = 2
). -/ existsλx L=>(L 2 two_pos).rec λl Y=>?_
refine_1⊢ {α | ∃ k, Even k ∧ α = ↑k} ⊆ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
refine_2
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
⊢ x ∈ {α | ∃ k, Even k ∧ α = ↑k}
useλy . x=>y.rec λS p=>?_
refine_1
x✝¹
:
ℝ
y
:
x✝¹ ∈ {α | ∃ k, Even k ∧ α = ↑k}
x✝
:
ℕ
x
:
0 < x✝
S
:
ℤ
p
:
Even S ∧ x✝¹ = ↑S
⊢ ↑x✝ ∣ ∑ i ∈ Finset.Icc 1 x✝, ⌊↑i * x✝¹⌋
refine_2
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
⊢ x ∈ {α | ∃ k, Even k ∧ α = ↑k}
·
refine_1
x✝¹
:
ℝ
y
:
x✝¹ ∈ {α | ∃ k, Even k ∧ α = ↑k}
x✝
:
ℕ
x
:
0 < x✝
S
:
ℤ
p
:
Even S ∧ x✝¹ = ↑S
⊢ ↑x✝ ∣ ∑ i ∈ Finset.Icc 1 x✝, ⌊↑i * x✝¹⌋
/- We start by showing that every α
of the form 2k
works. In this case, the sum simplifies to kn(n+1)
), which is clearly divisible by n
. -/ simp_all[λL:ℕ=>(by
x✝¹
:
ℝ
y
:
x✝¹ ∈ {α | ∃ k, Even k ∧ α = ↑k}
x✝
:
ℕ
x
:
0 < x✝
S
:
ℤ
p
:
Even S ∧ x✝¹ = ↑S
L
:
ℕ
⊢ ⌊↑L * ↑S⌋ = ↑L * S
norm_num[Int.floor_eq_iff] :⌊(L:ℝ)S⌋=L S )] rw[p.2,Int.dvd_iff_emod_eq_zero,Nat.lt_iff_add_one_le,<-Finset.sum_mul,←Nat.cast_sum, S.even_iff, ←Nat.Ico_succ_right,@ .((( Finset.sum_Ico_eq_sum_range))),Finset.sum_add_distrib ]at*
refine_1
x✝¹
:
ℝ
x✝
:
ℕ
x
:
0 + 1 ≤ x✝
S
:
ℤ
p
:
S % 2 = 0 ∧ ↑S = ↑S
⊢ ↑(∑ x ∈ Finset.range (x✝.succ - 1), 1 + ∑ x ∈ Finset.range (x✝.succ - 1), x) * S % ↑x✝ = 0
simp_all[Finset.sum_range_id]
refine_1
x✝¹
:
ℝ
x✝
:
ℕ
S
:
ℤ
x
:
1 ≤ x✝
p
:
2 ∣ S
⊢ ↑x✝ ∣ (↑x✝ + ↑x✝ * (↑x✝ - 1) / 2) * S
exact dvd_trans ⟨2+((_:ℕ)-1),by
x✝¹
:
ℝ
x✝
:
ℕ
S
:
ℤ
x
:
1 ≤ x✝
p
:
2 ∣ S
⊢ (↑x✝ + ↑x✝ * (↑x✝ - 1) / 2) * 2 = ↑x✝ * (2 + (↑x✝ - 1))
linarith[((‹ℕ›:Int)*(‹Nat›-1)).ediv_mul_cancel$ Int.prime_two.dvd_mul.2<|by
x✝¹
:
ℝ
x✝
:
ℕ
S
:
ℤ
x
:
1 ≤ x✝
p
:
2 ∣ S
⊢ 2 ∣ ↑x✝ ∨ 2 ∣ ↑x✝ - 1
·
x✝¹
:
ℝ
x✝
:
ℕ
S
:
ℤ
x
:
1 ≤ x✝
p
:
2 ∣ S
⊢ 2 ∣ ↑x✝ ∨ 2 ∣ ↑x✝ - 1
omega]⟩ ↑↑(mul_dvd_mul_left @_ (p)) /- Now let's prove the converse, i.e. that every α
in the LHS is an even integer. We claim for all such α
and n ∈ ℕ
, we have ⌊(n+1)*α⌋ = ⌊α⌋+2n(l-⌊α⌋)
. -/ suffices: ∀ (n : ℕ),⌊(n+1)*x⌋ =⌊ x⌋+2 * ↑ (n : ℕ) * (l-(⌊(x)⌋))
refine_2
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
this
:
∀ (n : ℕ), ⌊(↑n + 1) * x⌋ = ⌊x⌋ + 2 * ↑n * (l - ⌊x⌋)
⊢ x ∈ {α | ∃ k, Even k ∧ α = ↑k}
this
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
⊢ ∀ (n : ℕ), ⌊(↑n + 1) * x⌋ = ⌊x⌋ + 2 * ↑n * (l - ⌊x⌋)
·
refine_2
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
this
:
∀ (n : ℕ), ⌊(↑n + 1) * x⌋ = ⌊x⌋ + 2 * ↑n * (l - ⌊x⌋)
⊢ x ∈ {α | ∃ k, Even k ∧ α = ↑k}
/- Let's assume for now that the claim is true, and see how this is enough to finish our proof. -/ zify[mul_comm,Int.floor_eq_iff] at this
refine_2
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
this
:
∀ (n : ℕ), ↑⌊x⌋ + (↑l - ↑⌊x⌋) * (↑n * 2) ≤ x * (↑n + 1) ∧ x * (↑n + 1) < ↑⌊x⌋ + (↑l - ↑⌊x⌋) * (↑n * 2) + 1
⊢ x ∈ {α | ∃ k, Even k ∧ α = ↑k}
-- We'll show that α = 2(l-⌊α⌋)
, which is obviously even. use(l-⌊x⌋)*2
h
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
this
:
∀ (n : ℕ), ↑⌊x⌋ + (↑l - ↑⌊x⌋) * (↑n * 2) ≤ x * (↑n + 1) ∧ x * (↑n + 1) < ↑⌊x⌋ + (↑l - ↑⌊x⌋) * (↑n * 2) + 1
⊢ Even ((l - ⌊x⌋) * 2) ∧ x = ↑((l - ⌊x⌋) * 2)
norm_num
h
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
this
:
∀ (n : ℕ), ↑⌊x⌋ + (↑l - ↑⌊x⌋) * (↑n * 2) ≤ x * (↑n + 1) ∧ x * (↑n + 1) < ↑⌊x⌋ + (↑l - ↑⌊x⌋) * (↑n * 2) + 1
⊢ x = (↑l - ↑⌊x⌋) * 2
-- To do so, it suffices to show α ≤ 2(l-⌊α⌋)
and α ≥ 2(l-⌊α⌋)
. apply@le_antisymm
h.a
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
this
:
∀ (n : ℕ), ↑⌊x⌋ + (↑l - ↑⌊x⌋) * (↑n * 2) ≤ x * (↑n + 1) ∧ x * (↑n + 1) < ↑⌊x⌋ + (↑l - ↑⌊x⌋) * (↑n * 2) + 1
⊢ x ≤ (↑l - ↑⌊x⌋) * 2
h.a
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
this
:
∀ (n : ℕ), ↑⌊x⌋ + (↑l - ↑⌊x⌋) * (↑n * 2) ≤ x * (↑n + 1) ∧ x * (↑n + 1) < ↑⌊x⌋ + (↑l - ↑⌊x⌋) * (↑n * 2) + 1
⊢ (↑l - ↑⌊x⌋) * 2 ≤ x
/- To prove the first inequality, notice that if α > 2(l-⌊α⌋)
then there exists an integer N > 0
such that N ≥ 1/(α - 2(l -⌊α⌋))
. By our assumed claim (with n = N
), we have ⌊α⌋ + 2(l-⌊α⌋)N + 1 > (N+1)α
, i.e. ⌊α⌋ + (2(l-⌊α⌋) - α)N + 1 > α
, and this implies ⌊α⌋ > α
; contradiction. -/ use not_lt.1 (by
⊢ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋} = {α | ∃ k, Even k ∧ α = ↑k}
cases exists_nat_ge (1/(x-)) with| N =>nlinarith[ one_div_mul_cancel $ sub_ne_zero.2 ·.ne',9,Int.floor_le x, this N]) /- Similarly, if α < 2(l-⌊α⌋)
then we can find a positive natural N
such that N ≥ 1/(2(l-⌊α⌋) - α)
. By our claim (with n = N
), we have (N+1)α ≥ ⌊α⌋ + 2(l-⌊α⌋)N
, i.e. α ≥ ⌊α⌋ + (2(l-⌊α⌋) - α)N
, and this implies a ≥ ⌊α⌋ + 1
; contradiction. -/ use not_lt.1 (by
⊢ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋} = {α | ∃ k, Even k ∧ α = ↑k}
cases exists_nat_ge (1/:ℝ)with| A=>nlinarith[Int.lt_floor_add_one x,one_div_mul_cancel$ sub_ne_zero.2 ·.ne',this A]) /- Now all that's left to do is to prove our claim ⌊(n + 1)α⌋ = ⌊α⌋ + 2n(l - ⌊α⌋)
. -/ intro
this
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
n✝
:
ℕ
⊢ ⌊(↑n✝ + 1) * x⌋ = ⌊x⌋ + 2 * ↑n✝ * (l - ⌊x⌋)
-- We argue by strong induction on n
. induction‹_› [email protected]
this.ind
x
:
ℝ
L
:
x ∈ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋}
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
n✝
:
ℕ
a✝
:
∀ m < n✝, ⌊(↑m + 1) * x⌋ = ⌊x⌋ + 2 * ↑m * (l - ⌊x⌋)
⊢ ⌊(↑n✝ + 1) * x⌋ = ⌊x⌋ + 2 * ↑n✝ * (l - ⌊x⌋)
-- By our hypothesis on α
, we know that (n+1) | ∑_{i=1}^(n+1) ⌊iα⌋
specialize L$ ‹_›+1
this.ind
x
:
ℝ
l
:
ℤ
Y
:
∑ i ∈ Finset.Icc 1 2, ⌊↑i * x⌋ = ↑2 * l
n✝
:
ℕ
a✝
:
∀ m < n✝, ⌊(↑m + 1) * x⌋ = ⌊x⌋ + 2 * ↑m * (l - ⌊x⌋)
L
:
0 < n✝ + 1 → ↑(n✝ + 1) ∣ ∑ i ∈ Finset.Icc 1 (n✝ + 1), ⌊↑i * x⌋
⊢ ⌊(↑n✝ + 1) * x⌋ = ⌊x⌋ + 2 * ↑n✝ * (l - ⌊x⌋)
simp_all[add_comm,mul_assoc,Int.floor_eq_iff,<-Nat.Ico_succ_right, add_mul,(Finset.range_succ), Finset.sum_Ico_eq_sum_range]
this.ind
x
:
ℝ
l
:
ℤ
n✝
:
ℕ
Y
:
⌊x⌋ + ⌊x + x⌋ = 2 * l
a✝
:
∀ m < n✝, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
L
:
↑n✝ + 1 ∣ ⌊x + ↑n✝ * x⌋ + ∑ x_1 ∈ Finset.range n✝, ⌊x + ↑x_1 * x⌋
⊢ ↑⌊x⌋ + 2 * (↑n✝ * (↑l - ↑⌊x⌋)) ≤ x + ↑n✝ * x ∧ x + ↑n✝ * x < 1 + (↑⌊x⌋ + 2 * (↑n✝ * (↑l - ↑⌊x⌋)))
revert‹ℕ›
this.ind
x
:
ℝ
l
:
ℤ
Y
:
⌊x⌋ + ⌊x + x⌋ = 2 * l
⊢ ∀ (n : ℕ), (∀ m < n, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))) → ↑n + 1 ∣ ⌊x + ↑n * x⌋ + ∑ x_1 ∈ Finset.range n, ⌊x + ↑x_1 * x⌋ → ↑⌊x⌋ + 2 * (↑n * (↑l - ↑⌊x⌋)) ≤ x + ↑n * x ∧ x + ↑n * x < 1 + (↑⌊x⌋ + 2 * (↑n * (↑l - ↑⌊x⌋)))
/- Thus, there exists c
such that (n+1)*c = ∑_{i=1}^{n+1} ⌊iα⌋ = ⌊nα+α⌋ + ∑_{i=1}^n ⌊iα⌋
. -/ rintro A B@c
this.ind.intro
x
:
ℝ
l
:
ℤ
Y
:
⌊x⌋ + ⌊x + x⌋ = 2 * l
A
:
ℕ
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
c
:
ℤ
h✝
:
⌊x + ↑A * x⌋ + ∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c
⊢ ↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)))
simp_all[ Finset.mem_range.mp _,←eq_sub_iff_add_eq',Int.floor_eq_iff]
this.ind.intro
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
⊢ ↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)))
/- By the inductive hypothesis, ∑_{i=0}^{n-1}, ⌊α+iα⌋ = ∑_{i=0}^{n-1}, ⌊α⌋+2*i*(l-⌊α⌋)
. -/ suffices:∑d in .range A,⌊x+dx⌋=∑Q in .range A,(⌊x⌋+2(Q * (l-.floor x)))
this.ind.intro
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
⊢ ↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)))
this
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
⊢ ∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
·
this.ind.intro
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
⊢ ↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)))
suffices:∑d in ( .range A),(((d)):ℤ) =A * ( A-1)/2
this.ind.intro
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this✝
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
this
:
∑ d ∈ Finset.range A, ↑d = ↑A * (↑A - 1) / 2
⊢ ↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)))
this
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
⊢ ∑ d ∈ Finset.range A, ↑d = ↑A * (↑A - 1) / 2
·
this.ind.intro
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this✝
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
this
:
∑ d ∈ Finset.range A, ↑d = ↑A * (↑A - 1) / 2
⊢ ↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)))
have:(A : ℤ) * (A-1)%2=0
this
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this✝
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
this
:
∑ d ∈ Finset.range A, ↑d = ↑A * (↑A - 1) / 2
⊢ ↑A * (↑A - 1) % 2 = 0
this.ind.intro
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this✝¹
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
this✝
:
∑ d ∈ Finset.range A, ↑d = ↑A * (↑A - 1) / 2
this
:
↑A * (↑A - 1) % 2 = 0
⊢ ↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)))
·
this
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this✝
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
this
:
∑ d ∈ Finset.range A, ↑d = ↑A * (↑A - 1) / 2
⊢ ↑A * (↑A - 1) % 2 = 0
[email protected]_two_eq A with|_ B=>
this.inr
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B✝
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this✝
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
this
:
∑ d ∈ Finset.range A, ↑d = ↑A * (↑A - 1) / 2
B
:
↑A % 2 = 1
⊢ ↑A * (↑A - 1) % 2 = 0
norm_num[B,Int.sub_emod,Int.mul_emod] norm_num at*
this.ind.intro
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this✝¹
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
this✝
:
∑ d ∈ Finset.range A, ↑d = ↑A * (↑A - 1) / 2
this
:
2 ∣ ↑A * (↑A - 1)
⊢ ↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)))
norm_num[ Finset.sum_add_distrib,<-Finset.sum_mul, ←Finset.mul_sum _ _] at*
this.ind.intro
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this✝¹
:
∑ d ∈ Finset.range A, ↑d = ↑A * (↑A - 1) / 2
this✝
:
2 ∣ ↑A * (↑A - 1)
this
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ↑A * ⌊x⌋ + 2 * ((∑ i ∈ Finset.range A, ↑i) * (l - ⌊x⌋))
⊢ ↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)))
rw[eq_sub_iff_add_eq]at*
this.ind.intro
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ + ⌊x + ↑A * x⌋ = (↑A + 1) * c
this✝¹
:
∑ d ∈ Finset.range A, ↑d = ↑A * (↑A - 1) / 2
this✝
:
2 ∣ ↑A * (↑A - 1)
this
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ↑A * ⌊x⌋ + 2 * ((∑ i ∈ Finset.range A, ↑i) * (l - ⌊x⌋))
⊢ ↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * (↑A * (↑l - ↑⌊x⌋)))
/- Combined with ∑_{i=0}^{n-1},⌊iα+α⌋ = (n+1)c - ⌊nα+α⌋
, we have ⌊nα+α⌋ = (n+1)c - n⌊α⌋ - n(n-1)(l-⌊α⌋)
, so ⌊nα+α⌋ ≥ (n+1)c - n⌊α⌋ - n(n-1)(l-⌊α⌋)
and ⌊nα+α⌋ < (n+1)c - n⌊α⌋ - n(n-1)(l-⌊α⌋) + 1
. Also, since 2*l = ⌊α⌋ + ⌊2α⌋
, we have 2α+⌊α⌋-1 < 2*l ≤ 2α+⌊α⌋.
-/ zify[←mul_assoc, this,←eq_sub_iff_add_eq',‹_ =(@ ) /@›,Int.floor_eq_iff] at *
this.ind.intro
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this✝¹
:
2 ∣ ↑A * (↑A - 1)
B
:
∀ (m : ℕ), ↑m < ↑A → ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
h✝
:
(↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * ↑(↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * ↑(↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
this✝
:
True
this
:
True
⊢ ↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
zify[]at
this.ind.intro
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this✝¹
:
2 ∣ ↑A * (↑A - 1)
B
:
∀ (m : ℕ), ↑m < ↑A → ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
this✝
:
True
this
:
True
h✝
:
(↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
⊢ ↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
-- We will now show that c = n*(l-⌊α⌋) + ⌊α⌋
. cases unused variable `S5` note: this linter can be disabled with `set_option linter.unusedVariables false`
S5:lt_or_ge c (A * (l-.floor ↑x)+⌊x⌋ + 1)
this.ind.intro.inl
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this✝¹
:
2 ∣ ↑A * (↑A - 1)
B
:
∀ (m : ℕ), ↑m < ↑A → ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
this✝
:
True
this
:
True
h✝¹
:
(↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
h✝
:
c < ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
S5
:
⋯ = ⋯
⊢ ↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
this.ind.intro.inr
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this✝¹
:
2 ∣ ↑A * (↑A - 1)
B
:
∀ (m : ℕ), ↑m < ↑A → ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
this✝
:
True
this
:
True
h✝¹
:
(↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
h✝
:
c ≥ ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
S5
:
⋯ = ⋯
⊢ ↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
·
this.ind.intro.inl
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this✝¹
:
2 ∣ ↑A * (↑A - 1)
B
:
∀ (m : ℕ), ↑m < ↑A → ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
this✝
:
True
this
:
True
h✝¹
:
(↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ≤ x + ↑A * x ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
h✝
:
c < ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
S5
:
⋯ = ⋯
⊢ ↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
simp_all
this.ind.intro.inl
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this
:
2 ∣ ↑A * (↑A - 1)
h✝¹
:
c < ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
h✝
:
(↑A + 1) * ↑c ≤ x + ↑A * x + (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
⊢ ↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
have:(c+1:ℝ)<=A*(l-⌊x⌋)+⌊x⌋+1:=by
⊢ {α | ∀ (n : ℕ), 0 < n → ↑n ∣ ∑ i ∈ Finset.Icc 1 n, ⌊↑i * α⌋} = {α | ∃ k, Even k ∧ α = ↑k}
norm_cast simp_all
this.ind.intro.inl
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this✝
:
2 ∣ ↑A * (↑A - 1)
h✝¹
:
c < ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
h✝
:
(↑A + 1) * ↑c ≤ x + ↑A * x + (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
this
:
↑c ≤ ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋
⊢ ↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
cases this.eq_or_lt
this.ind.intro.inl.inl
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this✝
:
2 ∣ ↑A * (↑A - 1)
h✝²
:
c < ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
h✝¹
:
(↑A + 1) * ↑c ≤ x + ↑A * x + (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
this
:
↑c ≤ ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋
h✝
:
↑c = ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋
⊢ ↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
this.ind.intro.inl.inr
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this✝
:
2 ∣ ↑A * (↑A - 1)
h✝²
:
c < ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
h✝¹
:
(↑A + 1) * ↑c ≤ x + ↑A * x + (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
this
:
↑c ≤ ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋
h✝
:
↑c < ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋
⊢ ↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
·
this.ind.intro.inl.inl
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this✝
:
2 ∣ ↑A * (↑A - 1)
h✝²
:
c < ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
h✝¹
:
(↑A + 1) * ↑c ≤ x + ↑A * x + (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
this
:
↑c ≤ ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋
h✝
:
↑c = ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋
⊢ ↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
/- For if c = n*(l-⌊α⌋) + ⌊α⌋
, then $$⌊(n+1)α⌋ = (n+1)c - n⌊α⌋ - n(n-1)(l-⌊α⌋) = (n+1)(n(l - ⌊α⌋) + ⌊α⌋) - n⌊α⌋ - n(n-1)(l-⌊α⌋) = 2n(l-⌊α⌋) + ⌊α⌋
as desired. -/ repeat use by
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this✝
:
2 ∣ ↑A * (↑A - 1)
h✝²
:
c < ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
h✝¹
:
(↑A + 1) * ↑c ≤ x + ↑A * x + (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
this
:
↑c ≤ ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋
h✝
:
↑c = ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋
⊢ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
nlinarith /- Now, we show c = n*(l-⌊α⌋) + ⌊α⌋
via contradiction split into two cases. First suppose c ≤ n(l - ⌊α⌋) + ⌊α⌋ - 1
. $$(n+1)α < (n+1)c - n⌊α⌋ - n(n-1)(l-⌊α⌋) + 1 ≤ (n+1)(n(l-⌊α⌋) + ⌊α⌋ - 1) - n⌊α⌋ - n(n-1)(l-⌊α⌋) + 1 = 2n(l-⌊α⌋) + ⌊α⌋ - n = 2ln - 2n⌊α⌋ + ⌊α⌋ - n ≤ (2α+⌊α⌋)n - 2n⌊α⌋ + ⌊α⌋ - n = nα + n(α-⌊α⌋-1) + ⌊α⌋ n + α.
contradiction. -/ nlinarith[(by
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this✝
:
2 ∣ ↑A * (↑A - 1)
h✝²
:
c < ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
h✝¹
:
(↑A + 1) * ↑c ≤ x + ↑A * x + (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
this
:
↑c ≤ ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋
h✝
:
↑c < ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋
⊢ ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋ ≥ ↑c + 1
norm_cast at* :(A*(l -⌊x⌋):ℝ)+⌊(x)⌋ >=(c)+01),9,Int.add_emod ↑5,Int.floor_le (@x : ℝ),Int.lt_floor_add_one (x:)] /- Next, suppose c ≥ n(l - ⌊α⌋) + ⌊α⌋ + 1
. $$(n+1)α ≥ (n+1)c - n⌊α⌋ - n(n-1)(l-⌊α⌋) ≥ (n+1)(n(l-⌊α⌋) + ⌊α⌋ + 1) - n⌊α⌋ - n(n-1)(l-⌊α⌋) = 2n(l-⌊α⌋) + ⌊α⌋ + n + 1 = 2ln - 2n⌊α⌋ + ⌊α⌋ + n + 1 > (2α+⌊α⌋-1)n - 2n⌊α⌋ + ⌊α⌋ + n + 1 = nα + n(α-⌊α⌋) + ⌊α⌋ + 1 > n + α
contradiction. -/ simp_all
this.ind.intro.inr
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this
:
2 ∣ ↑A * (↑A - 1)
h✝¹
:
c ≥ ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
h✝
:
(↑A + 1) * ↑c ≤ x + ↑A * x + (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
⊢ ↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋) ≤ x + ↑A * x ∧ x + ↑A * x < 1 + (↑⌊x⌋ + 2 * ↑A * (↑l - ↑⌊x⌋))
nlinarith[(by
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
this
:
2 ∣ ↑A * (↑A - 1)
h✝¹
:
c ≥ ↑A * (l - ⌊x⌋) + ⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * ↑m * (↑l - ↑⌊x⌋))
h✝
:
(↑A + 1) * ↑c ≤ x + ↑A * x + (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) ∧ x + ↑A * x < (↑A + 1) * ↑c - (↑A * ↑⌊x⌋ + 2 * (↑A * (↑A - 1) / 2) * (↑l - ↑⌊x⌋)) + 1
⊢ ↑c ≥ ↑A * (↑l - ↑⌊x⌋) + ↑⌊x⌋ + 1
norm_cast:(c:ℝ)>=A*(l-⌊⌋)+⌊⌋+1),Int.floor_le x,Int.lt_floor_add_one x] rw [←Nat.cast_sum, mul_sub, Finset.sum_range_id]
this
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
this
:
∑ d ∈ Finset.range A, ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range A, (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
⊢ ↑(A * (A - 1) / 2) = (↑A * ↑A - ↑A * 1) / 2
cases A with|_=>
this.succ
x
:
ℝ
l
:
ℤ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
n✝
:
ℕ
B
:
∀ m < n✝ + 1, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range (n✝ + 1), ⌊x + ↑x_1 * x⌋ = (↑(n✝ + 1) + 1) * c - ⌊x + ↑(n✝ + 1) * x⌋
this
:
∑ d ∈ Finset.range (n✝ + 1), ⌊x + ↑d * x⌋ = ∑ Q ∈ Finset.range (n✝ + 1), (⌊x⌋ + 2 * (↑Q * (l - ⌊x⌋)))
⊢ ↑((n✝ + 1) * (n✝ + 1 - 1) / 2) = (↑(n✝ + 1) * ↑(n✝ + 1) - ↑(n✝ + 1) * 1) / 2
norm_num[mul_add] use Finset.sum_congr rfl<|by
x
:
ℝ
l
:
ℤ
A
:
ℕ
c
:
ℤ
Y
:
2 * ↑l ≤ x + x + ↑⌊x⌋ ∧ x + x < 2 * ↑l - ↑⌊x⌋ + 1
B
:
∀ m < A, ↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)) ≤ x + ↑m * x ∧ x + ↑m * x < 1 + (↑⌊x⌋ + 2 * (↑m * (↑l - ↑⌊x⌋)))
h✝
:
∑ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = (↑A + 1) * c - ⌊x + ↑A * x⌋
⊢ ∀ x_1 ∈ Finset.range A, ⌊x + ↑x_1 * x⌋ = ⌊x⌋ + 2 * (↑x_1 * (l - ⌊x⌋))
simp_all[add_comm,Int.floor_eq_iff]```
The following command shows which axioms the proof relies upon:
`'imo_2024_p1' depends on axioms: [propext, Classical.choice, Quot.sound]`#print axioms imo_2024_p1
These are the standard built in axioms.