GitHub - levihsu/OOTDiffusion: OOTDiffusion의 공식 구현: 조절 가능한 가상 착용을 위한 OOTDiffusion: 아웃핏팅 퓨전 기반 잠재 확산

콘텐츠

OOTDiffusion

This repository is the official implementation of OOTDiffusion

🤩 Please give me a star if you find it interesting!

OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on
Yuhao Xu, Tao Gu, Weifeng Chen, and Chengcai Chen
Xiao-i Research

An early version of our paper is available now! [arXiv]

🥳🥳 Our model checkpoints trained on VITON-HD (half-body) and Dress Code (full-body) have been released!

demo workflow

Installation

  1. Clone the repository

git clone https://github.com/levihsu/OOTDiffusion

  1. Create a conda environment and install the required packages

conda create -n ootd python==3.10 conda activate ootd pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 numpy==1.24.4 scipy==1.10.1 scikit-image==0.21.0 opencv-python==4.7.0.72 pillow==9.4.0 diffusers==0.24.0 transformers==4.36.2 accelerate==0.26.1 matplotlib==3.7.4 tqdm==4.64.1 gradio==4.16.0 config==0.5.1 einops==0.7.0 ninja==1.10.2

Inference

  1. Half-body model

cd OOTDiffusion/run python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --scale 2.0 --sample 4

  1. Full-body model

Garment category must be paired: 0 = upperbody; 1 = lowerbody; 2 = dress

cd OOTDiffusion/run python run_ootd.py --model_path <model-image-path> --cloth_path <cloth-image-path> --model_type dc --category 2 --scale 2.0 --sample 4

Citation

@misc{xu2024ootdiffusion,
      title={OOTDiffusion: Outfitting Fusion based Latent Diffusion for Controllable Virtual Try-on}, 
      author={Yuhao Xu and Tao Gu and Weifeng Chen and Chengcai Chen},
      year={2024},
      eprint={2403.01779},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

TODO List

  • Paper
  • Gradio demo
  • Inference code
  • Model weights
  • Training code
요약하다
OOTDiffusion은 가상 트라이온을 위한 OOTDiffusion 기반 의상 퓨전을 제공하는 공식 구현이다. 모델 체크포인트는 VITON-HD와 Dress Code에서 훈련되었으며, Hugging Face Link에서 확인할 수 있다. 코드 및 모델은 리눅스(우분투 22.04)에서만 테스트되었으며, 설치 및 추론 방법이 상세히 안내되어 있다. 또한 논문, 그라디오 데모, 모델 가중치, 훈련 코드가 추가로 개발 예정이다.