- Aisen, P., Enns, C. & Wessling-Resnick, M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 33, 940–959 (2001).
[Article](https://doi.org/10.1016%2FS1357-2725%2801%2900063-2) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXlt1Sisbw%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11470229) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Chemistry%20and%20biology%20of%20eukaryotic%20iron%20metabolism&journal=Int.%20J.%20Biochem.%20Cell%20Biol.&doi=10.1016%2FS1357-2725%2801%2900063-2&volume=33&pages=940-959&publication_year=2001&author=Aisen%2CP&author=Enns%2CC&author=Wessling-Resnick%2CM)
- Ponka, P., Tenenbein, M. & Eaton, J. W. in Handbook on the Toxicology of Metals 4th edn (eds. Nordberg, G. F. et al.) Vol. 2, 879–902 (Elsevier, 2015).
- Hentze, M. W., Muckenthaler, M. U. & Andrews, N. C. Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004).
[Article](https://doi.org/10.1016%2FS0092-8674%2804%2900343-5) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXjvFemsbg%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15109490) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Balancing%20acts%3A%20molecular%20control%20of%20mammalian%20iron%20metabolism&journal=Cell&doi=10.1016%2FS0092-8674%2804%2900343-5&volume=117&pages=285-297&publication_year=2004&author=Hentze%2CMW&author=Muckenthaler%2CMU&author=Andrews%2CNC)
- Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).
[Article](https://doi.org/10.1056%2FNEJMra041809) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXit1Wkt7Y%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15758012) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Anemia%20of%20chronic%20disease&journal=N.%20Engl.%20J.%20Med.&doi=10.1056%2FNEJMra041809&volume=352&pages=1011-1023&publication_year=2005&author=Weiss%2CG&author=Goodnough%2CLT)
- Hentze, M. W., Muckenthaler, M. U., Galy, B. & Camaschella, C. Two to tango: regulation of mammalian iron metabolism. Cell 142, 24–38 (2010).
[Article](https://doi.org/10.1016%2Fj.cell.2010.06.028) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXpt1Cjt7k%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20603012) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Two%20to%20tango%3A%20regulation%20of%20mammalian%20iron%20metabolism&journal=Cell&doi=10.1016%2Fj.cell.2010.06.028&volume=142&pages=24-38&publication_year=2010&author=Hentze%2CMW&author=Muckenthaler%2CMU&author=Galy%2CB&author=Camaschella%2CC)
- Andrews, N. C. Disorders of iron metabolism. N. Engl. J. Med. 341, 1986–1995 (1999).
[Article](https://doi.org/10.1056%2FNEJM199912233412607) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXktVaqsw%3D%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10607817) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Disorders%20of%20iron%20metabolism&journal=N.%20Engl.%20J.%20Med.&doi=10.1056%2FNEJM199912233412607&volume=341&pages=1986-1995&publication_year=1999&author=Andrews%2CNC)
- Lill, R. Function and biogenesis of iron-sulphur proteins. Nature 460, 831–838 (2009).
[Article](https://doi.org/10.1038%2Fnature08301) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXpvFCku7c%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19675643) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Function%20and%20biogenesis%20of%20iron-sulphur%20proteins&journal=Nature&doi=10.1038%2Fnature08301&volume=460&pages=831-838&publication_year=2009&author=Lill%2CR)
- Rouault, T. A. Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat. Rev. Mol. Cell Biol. 16, 45–55 (2015).
[Article](https://doi.org/10.1038%2Fnrm3909) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXitValurzO) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25425402) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mammalian%20iron-sulphur%20proteins%3A%20novel%20insights%20into%20biogenesis%20and%20function&journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&doi=10.1038%2Fnrm3909&volume=16&pages=45-55&publication_year=2015&author=Rouault%2CTA)
- Jordan, A. & Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 67, 71–98 (1998).
[Article](https://doi.org/10.1146%2Fannurev.biochem.67.1.71) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1cXlsFOms7Y%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9759483) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ribonucleotide%20reductases&journal=Annu.%20Rev.%20Biochem.&doi=10.1146%2Fannurev.biochem.67.1.71&volume=67&pages=71-98&publication_year=1998&author=Jordan%2CA&author=Reichard%2CP)
- Rudolf, J., Makrantoni, V., Ingledew, W. J., Stark, M. J. & White, M. F. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol. Cell 23, 801–808 (2006).
[Article](https://doi.org/10.1016%2Fj.molcel.2006.07.019) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XhtVKgu7%2FJ) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16973432) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20DNA%20repair%20helicases%20XPD%20and%20FancJ%20have%20essential%20iron-sulfur%20domains&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2006.07.019&volume=23&pages=801-808&publication_year=2006&author=Rudolf%2CJ&author=Makrantoni%2CV&author=Ingledew%2CWJ&author=Stark%2CMJ&author=White%2CMF)
- Gray, N. K. & Hentze, M. W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13, 3882–3891 (1994).
[Article](https://doi.org/10.1002%2Fj.1460-2075.1994.tb06699.x) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2MXnslentQ%3D%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC395301) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8070415) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20regulatory%20protein%20prevents%20binding%20of%20the%2043S%20translation%20pre-initiation%20complex%20to%20ferritin%20and%20eALAS%20mRNAs&journal=EMBO%20J.&doi=10.1002%2Fj.1460-2075.1994.tb06699.x&volume=13&pages=3882-3891&publication_year=1994&author=Gray%2CNK&author=Hentze%2CMW)
- Rouault, T. A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2, 406–414 (2006).
[Article](https://doi.org/10.1038%2Fnchembio807) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XmvFyqsrg%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16850017) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20iron%20regulatory%20proteins%20in%20mammalian%20iron%20homeostasis%20and%20disease&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio807&volume=2&pages=406-414&publication_year=2006&author=Rouault%2CTA)
- Kortman, G. A., Raffatellu, M., Swinkels, D. W. & Tjalsma, H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol. Rev. 38, 1202–1234 (2014).
[Article](https://doi.org/10.1111%2F1574-6976.12086) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvVyisb%2FL) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25205464) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nutritional%20iron%20turned%20inside%20out%3A%20intestinal%20stress%20from%20a%20gut%20microbial%20perspective&journal=FEMS%20Microbiol.%20Rev.&doi=10.1111%2F1574-6976.12086&volume=38&pages=1202-1234&publication_year=2014&author=Kortman%2CGA&author=Raffatellu%2CM&author=Swinkels%2CDW&author=Tjalsma%2CH)
- Nemeth, E. & Ganz, T. Regulation of iron metabolism by hepcidin. Annu. Rev. Nutr. 26, 323–342 (2006).
[Article](https://doi.org/10.1146%2Fannurev.nutr.26.061505.111303) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28Xpt1Cltro%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16848710) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20iron%20metabolism%20by%20hepcidin&journal=Annu.%20Rev.%20Nutr.&doi=10.1146%2Fannurev.nutr.26.061505.111303&volume=26&pages=323-342&publication_year=2006&author=Nemeth%2CE&author=Ganz%2CT)
- Drakesmith, H. & Prentice, A. M. Hepcidin and the iron-infection axis. Science 338, 768–772 (2012).
[Article](https://doi.org/10.1126%2Fscience.1224577) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xhs1WksrzN) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23139325) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepcidin%20and%20the%20iron-infection%20axis&journal=Science&doi=10.1126%2Fscience.1224577&volume=338&pages=768-772&publication_year=2012&author=Drakesmith%2CH&author=Prentice%2CAM)
- Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).
[Article](https://doi.org/10.1126%2Fscience.1104742) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXhtVOjsL3K) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15514116) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepcidin%20regulates%20cellular%20iron%20efflux%20by%20binding%20to%20ferroportin%20and%20inducing%20its%20internalization&journal=Science&doi=10.1126%2Fscience.1104742&volume=306&pages=2090-2093&publication_year=2004&author=Nemeth%2CE)
- Donovan, A. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 (2000).
[Article](https://doi.org/10.1038%2F35001596) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXhsVWitrY%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10693807) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Positional%20cloning%20of%20zebrafish%20ferroportin1%20identifies%20a%20conserved%20vertebrate%20iron%20exporter&journal=Nature&doi=10.1038%2F35001596&volume=403&pages=776-781&publication_year=2000&author=Donovan%2CA)
- Hellman, N. E. & Gitlin, J. D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22, 439–458 (2002).
[Article](https://doi.org/10.1146%2Fannurev.nutr.22.012502.114457) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD38XmtF2htb8%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12055353) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ceruloplasmin%20metabolism%20and%20function&journal=Annu.%20Rev.%20Nutr.&doi=10.1146%2Fannurev.nutr.22.012502.114457&volume=22&pages=439-458&publication_year=2002&author=Hellman%2CNE&author=Gitlin%2CJD)
- Harris, Z. L., Durley, A. P., Man, T. K. & Gitlin, J. D. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl Acad. Sci. USA 96, 10812–10817 (1999).
[Article](https://doi.org/10.1073%2Fpnas.96.19.10812) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1MXmtFKjsL8%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC17965) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10485908) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeted%20gene%20disruption%20reveals%20an%20essential%20role%20for%20ceruloplasmin%20in%20cellular%20iron%20efflux&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.96.19.10812&volume=96&pages=10812-10817&publication_year=1999&author=Harris%2CZL&author=Durley%2CAP&author=Man%2CTK&author=Gitlin%2CJD)
- Yu, Y. et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood 136, 726–739 (2020).
[Article](https://doi.org/10.1182%2Fblood.2019002907) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhs1OhtLfE) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414596) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32374849) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepatic%20transferrin%20plays%20a%20role%20in%20systemic%20iron%20homeostasis%20and%20liver%20ferroptosis&journal=Blood&doi=10.1182%2Fblood.2019002907&volume=136&pages=726-739&publication_year=2020&author=Yu%2CY)
- Shayeghi, M. et al. Identification of an intestinal heme transporter. Cell 122, 789–801 (2005).
[Article](https://doi.org/10.1016%2Fj.cell.2005.06.025) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXhtVaqu73F) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16143108) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identification%20of%20an%20intestinal%20heme%20transporter&journal=Cell&doi=10.1016%2Fj.cell.2005.06.025&volume=122&pages=789-801&publication_year=2005&author=Shayeghi%2CM)
- Conrad, M. E. & Umbreit, J. N. Iron absorption and transport-an update. Am. J. Hematol. 64, 287–298 (2000).
[Article](https://doi.org/10.1002%2F1096-8652%28200008%2964%3A4%3C287%3A%3AAID-AJH9%3E3.0.CO%3B2-L) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXmtVCjtb0%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10911382) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20absorption%20and%20transport-an%20update&journal=Am.%20J.%20Hematol.&doi=10.1002%2F1096-8652%28200008%2964%3A4%3C287%3A%3AAID-AJH9%3E3.0.CO%3B2-L&volume=64&pages=287-298&publication_year=2000&author=Conrad%2CME&author=Umbreit%2CJN)
- McKie, A. T. et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299–309 (2000).
[Article](https://doi.org/10.1016%2FS1097-2765%2800%2980425-6) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXhslyhtL0%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10882071) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20novel%20duodenal%20iron-regulated%20transporter%2C%20IREG1%2C%20implicated%20in%20the%20basolateral%20transfer%20of%20iron%20to%20the%20circulation&journal=Mol.%20Cell&doi=10.1016%2FS1097-2765%2800%2980425-6&volume=5&pages=299-309&publication_year=2000&author=McKie%2CAT)
- Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997).
[Article](https://doi.org/10.1038%2F41343) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2sXltFGqtbY%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9242408) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cloning%20and%20characterization%20of%20a%20mammalian%20proton-coupled%20metal-ion%20transporter&journal=Nature&doi=10.1038%2F41343&volume=388&pages=482-488&publication_year=1997&author=Gunshin%2CH)
- Muckenthaler, M. U., Galy, B. & Hentze, M. W. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev. Nutr. 28, 197–213 (2008).
[Article](https://doi.org/10.1146%2Fannurev.nutr.28.061807.155521) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXhtV2isLzN) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18489257) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Systemic%20iron%20homeostasis%20and%20the%20iron-responsive%20element%2Firon-regulatory%20protein%20%28IRE%2FIRP%29%20regulatory%20network&journal=Annu%20Rev.%20Nutr.&doi=10.1146%2Fannurev.nutr.28.061807.155521&volume=28&pages=197-213&publication_year=2008&author=Muckenthaler%2CMU&author=Galy%2CB&author=Hentze%2CMW)
- Ohgami, R. S., Campagna, D. R., McDonald, A. & Fleming, M. D. The Steap proteins are metalloreductases. Blood 108, 1388–1394 (2006).
[Article](https://doi.org/10.1182%2Fblood-2006-02-003681) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28Xot1ymu7g%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1785011) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16609065) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20Steap%20proteins%20are%20metalloreductases&journal=Blood&doi=10.1182%2Fblood-2006-02-003681&volume=108&pages=1388-1394&publication_year=2006&author=Ohgami%2CRS&author=Campagna%2CDR&author=McDonald%2CA&author=Fleming%2CMD)
- Arosio, P. & Levi, S. Ferritin, iron homeostasis, and oxidative damage. Free Radic. Biol. Med 33, 457–463 (2002).
[Article](https://doi.org/10.1016%2FS0891-5849%2802%2900842-0) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD38XlvVWmtbg%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12160928) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferritin%2C%20iron%20homeostasis%2C%20and%20oxidative%20damage&journal=Free%20Radic.%20Biol.%20Med&doi=10.1016%2FS0891-5849%2802%2900842-0&volume=33&pages=457-463&publication_year=2002&author=Arosio%2CP&author=Levi%2CS)
- Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).
[Article](https://doi.org/10.1038%2Fnature13148) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXntlyisrc%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180099) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24695223) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Quantitative%20proteomics%20identifies%20NCOA4%20as%20the%20cargo%20receptor%20mediating%20ferritinophagy&journal=Nature&doi=10.1038%2Fnature13148&volume=509&pages=105-109&publication_year=2014&author=Mancias%2CJD&author=Wang%2CX&author=Gygi%2CSP&author=Harper%2CJW&author=Kimmelman%2CAC)
- Dowdle, W. E. et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069–1079 (2014).
[Article](https://doi.org/10.1038%2Fncb3053) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhslOisrnE) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25327288) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Selective%20VPS34%20inhibitor%20blocks%20autophagy%20and%20uncovers%20a%20role%20for%20NCOA4%20in%20ferritin%20degradation%20and%20iron%20homeostasis%20in%20vivo&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb3053&volume=16&pages=1069-1079&publication_year=2014&author=Dowdle%2CWE)
- Diao, J. et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563–566 (2015).
[Article](https://doi.org/10.1038%2Fnature14147) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXjt1Sntbc%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442024) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25686604) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ATG14%20promotes%20membrane%20tethering%20and%20fusion%20of%20autophagosomes%20to%20endolysosomes&journal=Nature&doi=10.1038%2Fnature14147&volume=520&pages=563-566&publication_year=2015&author=Diao%2CJ)
- Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).
[Article](https://doi.org/10.1016%2Fj.cell.2012.11.001) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhvVaisrvK) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23217709) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20hairpin-type%20tail-anchored%20SNARE%20syntaxin%2017%20targets%20to%20autophagosomes%20for%20fusion%20with%20endosomes%2Flysosomes&journal=Cell&doi=10.1016%2Fj.cell.2012.11.001&volume=151&pages=1256-1269&publication_year=2012&author=Itakura%2CE&author=Kishi-Itakura%2CC&author=Mizushima%2CN)
- Anandhan, A. et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci. Adv. 9, eade9585 (2023).
[Article](https://doi.org/10.1126%2Fsciadv.ade9585) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXjsFWmu7g%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891695) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36724221) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=NRF2%20controls%20iron%20homeostasis%20and%20ferroptosis%20through%20HERC2%20and%20VAMP8&journal=Sci.%20Adv.&doi=10.1126%2Fsciadv.ade9585&volume=9&publication_year=2023&author=Anandhan%2CA)
- Pinnix, Z. K. et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med. 2, 43ra56 (2010).
[Article](https://doi.org/10.1126%2Fscitranslmed.3001127) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734848) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20686179) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroportin%20and%20iron%20regulation%20in%20breast%20cancer%20progression%20and%20prognosis&journal=Sci.%20Transl.%20Med.&doi=10.1126%2Fscitranslmed.3001127&volume=2&publication_year=2010&author=Pinnix%2CZK)
- Zhang, D. L., Hughes, R. M., Ollivierre-Wilson, H., Ghosh, M. C. & Rouault, T. A. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab. 9, 461–473 (2009).
[Article](https://doi.org/10.1016%2Fj.cmet.2009.03.006) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXosVCks78%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685206) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19416716) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20ferroportin%20transcript%20that%20lacks%20an%20iron-responsive%20element%20enables%20duodenal%20and%20erythroid%20precursor%20cells%20to%20evade%20translational%20repression&journal=Cell%20Metab.&doi=10.1016%2Fj.cmet.2009.03.006&volume=9&pages=461-473&publication_year=2009&author=Zhang%2CDL&author=Hughes%2CRM&author=Ollivierre-Wilson%2CH&author=Ghosh%2CMC&author=Rouault%2CTA)
- Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).
[Article](https://doi.org/10.1016%2Fj.cell.2012.03.042) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XnslSntrw%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367386) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22632970) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20an%20iron-dependent%20form%20of%20nonapoptotic%20cell%20death&journal=Cell&doi=10.1016%2Fj.cell.2012.03.042&volume=149&pages=1060-1072&publication_year=2012&author=Dixon%2CSJ)
- Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).
[Article](https://doi.org/10.1016%2Fj.cell.2017.09.021) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1Wqs7%2FL) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685180) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28985560) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20a%20regulated%20cell%20death%20nexus%20linking%20metabolism%2C%20redox%20biology%2C%20and%20disease&journal=Cell&doi=10.1016%2Fj.cell.2017.09.021&volume=171&pages=273-285&publication_year=2017&author=Stockwell%2CBR)
- Doll, S. & Conrad, M. Iron and ferroptosis: a still ill-defined liaison. IUBMB Life 69, 423–434 (2017).
[Article](https://doi.org/10.1002%2Fiub.1616) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXjvFajtrs%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28276141) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20ferroptosis%3A%20a%20still%20ill-defined%20liaison&journal=IUBMB%20Life&doi=10.1002%2Fiub.1616&volume=69&pages=423-434&publication_year=2017&author=Doll%2CS&author=Conrad%2CM)
- Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).
[Article](https://doi.org/10.1016%2Fj.cell.2013.12.010) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtF2is70%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076414) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24439385) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20ferroptotic%20cancer%20cell%20death%20by%20GPX4&journal=Cell&doi=10.1016%2Fj.cell.2013.12.010&volume=156&pages=317-331&publication_year=2014&author=Yang%2CWS)
- Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).
[Article](https://doi.org/10.1038%2Fncb3064) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvFKlsrrF) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25402683) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inactivation%20of%20the%20ferroptosis%20regulator%20Gpx4%20triggers%20acute%20renal%20failure%20in%20mice&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb3064&volume=16&pages=1180-1191&publication_year=2014&author=Friedmann%20Angeli%2CJP)
- Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).
[Article](https://doi.org/10.1038%2Fs41586-019-1705-2) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitFGns7vM) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883167) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31634900) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20CoQ%20oxidoreductase%20FSP1%20acts%20parallel%20to%20GPX4%20to%20inhibit%20ferroptosis&journal=Nature&doi=10.1038%2Fs41586-019-1705-2&volume=575&pages=688-692&publication_year=2019&author=Bersuker%2CK)
- Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).
[Article](https://doi.org/10.1038%2Fs41586-019-1707-0) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitFGns7vN) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31634899) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=FSP1%20is%20a%20glutathione-independent%20ferroptosis%20suppressor&journal=Nature&doi=10.1038%2Fs41586-019-1707-0&volume=575&pages=693-698&publication_year=2019&author=Doll%2CS)
- Nakamura, T. et al. Phase separation of FSP1 promotes ferroptosis. Nature 619, 371–377 (2023).
[Article](https://doi.org/10.1038%2Fs41586-023-06255-6) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhtlCntL7I) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338336) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37380771) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Phase%20separation%20of%20FSP1%20promotes%20ferroptosis&journal=Nature&doi=10.1038%2Fs41586-023-06255-6&volume=619&pages=371-377&publication_year=2023&author=Nakamura%2CT)
- Mao, C., Liu, X., Yan, Y., Olszewski, K. & Gan, B. Reply to: DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E19–E23 (2023).
[Article](https://doi.org/10.1038%2Fs41586-023-06270-7) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVWjsbrP) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37407682) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Reply%20to%3A%20DHODH%20inhibitors%20sensitize%20to%20ferroptosis%20by%20FSP1%20inhibition&journal=Nature&doi=10.1038%2Fs41586-023-06270-7&volume=619&pages=E19-E23&publication_year=2023&author=Mao%2CC&author=Liu%2CX&author=Yan%2CY&author=Olszewski%2CK&author=Gan%2CB)
- Mishima, E. et al. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E9–E18 (2023).
[Article](https://doi.org/10.1038%2Fs41586-023-06269-0) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVWjsb3K) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37407687) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=DHODH%20inhibitors%20sensitize%20to%20ferroptosis%20by%20FSP1%20inhibition&journal=Nature&doi=10.1038%2Fs41586-023-06269-0&volume=619&pages=E9-E18&publication_year=2023&author=Mishima%2CE)
- Mao, C. et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586–590 (2021).
[Article](https://doi.org/10.1038%2Fs41586-021-03539-7) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVOksLjE) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895686) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33981038) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=DHODH-mediated%20ferroptosis%20defence%20is%20a%20targetable%20vulnerability%20in%20cancer&journal=Nature&doi=10.1038%2Fs41586-021-03539-7&volume=593&pages=586-590&publication_year=2021&author=Mao%2CC)
- Dixon, S. J. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).
[Article](https://doi.org/10.7554%2FeLife.02523) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054777) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24844246) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pharmacological%20inhibition%20of%20cystine-glutamate%20exchange%20induces%20endoplasmic%20reticulum%20stress%20and%20ferroptosis&journal=eLife&doi=10.7554%2FeLife.02523&volume=3&publication_year=2014&author=Dixon%2CSJ)
- Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).
[Article](https://doi.org/10.1038%2Fnchembio.2238) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhvVGgtLrE) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27842066) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oxidized%20arachidonic%20and%20adrenic%20PEs%20navigate%20cells%20to%20ferroptosis&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio.2238&volume=13&pages=81-90&publication_year=2017&author=Kagan%2CVE)
- Torti, S. V. & Torti, F. M. Iron and cancer: 2020 vision. Cancer Res. 80, 5435–5448 (2020).
[Article](https://doi.org/10.1158%2F0008-5472.CAN-20-2017) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXlvFemtrw%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32928919) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20cancer%3A%202020%20vision&journal=Cancer%20Res.&doi=10.1158%2F0008-5472.CAN-20-2017&volume=80&pages=5435-5448&publication_year=2020&author=Torti%2CSV&author=Torti%2CFM)
- Xue, Q. et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy 19, 1982–1996 (2023).
[Article](https://doi.org/10.1080%2F15548627.2023.2165323) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht1agsLc%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283421) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36622894) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Copper-dependent%20autophagic%20degradation%20of%20GPX4%20drives%20ferroptosis&journal=Autophagy&doi=10.1080%2F15548627.2023.2165323&volume=19&pages=1982-1996&publication_year=2023&author=Xue%2CQ)
- Chiabrando, D., Vinchi, F., Fiorito, V., Mercurio, S. & Tolosano, E. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front. Pharm. 5, 61 (2014).
[Article](https://doi.org/10.3389%2Ffphar.2014.00061) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Heme%20in%20pathophysiology%3A%20a%20matter%20of%20scavenging%2C%20metabolism%20and%20trafficking%20across%20cell%20membranes&journal=Front.%20Pharm.&doi=10.3389%2Ffphar.2014.00061&volume=5&publication_year=2014&author=Chiabrando%2CD&author=Vinchi%2CF&author=Fiorito%2CV&author=Mercurio%2CS&author=Tolosano%2CE)
- Torti, S. V. & Torti, F. M. Iron and cancer: more ore to be mined. Nat. Rev. Cancer 13, 342–355 (2013).
[Article](https://doi.org/10.1038%2Fnrc3495) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXlvF2isL8%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23594855) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20cancer%3A%20more%20ore%20to%20be%20mined&journal=Nat.%20Rev.%20Cancer&doi=10.1038%2Fnrc3495&volume=13&pages=342-355&publication_year=2013&author=Torti%2CSV&author=Torti%2CFM)
- Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).
[Article](https://doi.org/10.1016%2Fj.cell.2016.12.034) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhslaqsL4%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706455) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28129536) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20red%20carpet%20for%20iron%20metabolism&journal=Cell&doi=10.1016%2Fj.cell.2016.12.034&volume=168&pages=344-361&publication_year=2017&author=Muckenthaler%2CMU&author=Rivella%2CS&author=Hentze%2CMW&author=Galy%2CB)
- Kumar, S. & Bandyopadhyay, U. Free heme toxicity and its detoxification systems in human. Toxicol. Lett. 157, 175–188 (2005).
[Article](https://doi.org/10.1016%2Fj.toxlet.2005.03.004) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXks1Wmt78%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15917143) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Free%20heme%20toxicity%20and%20its%20detoxification%20systems%20in%20human&journal=Toxicol.%20Lett.&doi=10.1016%2Fj.toxlet.2005.03.004&volume=157&pages=175-188&publication_year=2005&author=Kumar%2CS&author=Bandyopadhyay%2CU)
- Papanikolaou, G. & Pantopoulos, K. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 202, 199–211 (2005).
[Article](https://doi.org/10.1016%2Fj.taap.2004.06.021) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXjvF2g) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15629195) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20metabolism%20and%20toxicity&journal=Toxicol.%20Appl.%20Pharmacol.&doi=10.1016%2Fj.taap.2004.06.021&volume=202&pages=199-211&publication_year=2005&author=Papanikolaou%2CG&author=Pantopoulos%2CK)
- Bacon, B. R. et al. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 54, 328–343 (2011).
[Article](https://doi.org/10.1002%2Fhep.24330) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21452290) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Diagnosis%20and%20management%20of%20hemochromatosis%3A%202011%20practice%20guideline%20by%20the%20American%20Association%20for%20the%20Study%20of%20Liver%20Diseases&journal=Hepatology&doi=10.1002%2Fhep.24330&volume=54&pages=328-343&publication_year=2011&author=Bacon%2CBR)
- Anderson, G. J. & Frazer, D. M. Current understanding of iron homeostasis. Am. J. Clin. Nutr. 106, 1559S–1566S (2017).
[Article](https://doi.org/10.3945%2Fajcn.117.155804) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701707) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29070551) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Current%20understanding%20of%20iron%20homeostasis&journal=Am.%20J.%20Clin.%20Nutr.&doi=10.3945%2Fajcn.117.155804&volume=106&pages=1559S-1566S&publication_year=2017&author=Anderson%2CGJ&author=Frazer%2CDM)
- Bridle, K. R. et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361, 669–673 (2003).
[Article](https://doi.org/10.1016%2FS0140-6736%2803%2912602-5) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXhsVajt7Y%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12606179) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Disrupted%20hepcidin%20regulation%20in%20HFE-associated%20haemochromatosis%20and%20the%20liver%20as%20a%20regulator%20of%20body%20iron%20homoeostasis&journal=Lancet&doi=10.1016%2FS0140-6736%2803%2912602-5&volume=361&pages=669-673&publication_year=2003&author=Bridle%2CKR)
- Kowdley, K. V. Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology 127, S79–S86 (2004).
[Article](https://doi.org/10.1016%2Fj.gastro.2004.09.019) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXhtVGmtb%2FN) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15508107) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%2C%20hemochromatosis%2C%20and%20hepatocellular%20carcinoma&journal=Gastroenterology&doi=10.1016%2Fj.gastro.2004.09.019&volume=127&pages=S79-S86&publication_year=2004&author=Kowdley%2CKV)
- Fernandez-Real, J. M. et al. Blood letting in high-ferritin type 2 diabetes: effects on vascular reactivity. Diabetes Care 25, 2249–2255 (2002).
[Article](https://doi.org/10.2337%2Fdiacare.25.12.2249) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12453969) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Blood%20letting%20in%20high-ferritin%20type%202%20diabetes%3A%20effects%20on%20vascular%20reactivity&journal=Diabetes%20Care&doi=10.2337%2Fdiacare.25.12.2249&volume=25&pages=2249-2255&publication_year=2002&author=Fernandez-Real%2CJM)
- Wood, J. C. Cardiac iron across different transfusion-dependent diseases. Blood Rev. 22, S14–S21 (2008).
[Article](https://doi.org/10.1016%2FS0268-960X%2808%2970004-3) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhsFShsr8%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896332) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19059052) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cardiac%20iron%20across%20different%20transfusion-dependent%20diseases&journal=Blood%20Rev.&doi=10.1016%2FS0268-960X%2808%2970004-3&volume=22&pages=S14-S21&publication_year=2008&author=Wood%2CJC)
- Fang, X. et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ. Res. 127, 486–501 (2020).
[Article](https://doi.org/10.1161%2FCIRCRESAHA.120.316509) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsV2mt73M) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32349646) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Loss%20of%20cardiac%20ferritin%20H%20facilitates%20cardiomyopathy%20via%20Slc7a11-mediated%20ferroptosis&journal=Circ.%20Res.&doi=10.1161%2FCIRCRESAHA.120.316509&volume=127&pages=486-501&publication_year=2020&author=Fang%2CX)
- Fang, X. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl Acad. Sci. USA 116, 2672–2680 (2019).
[Article](https://doi.org/10.1073%2Fpnas.1821022116) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXivVajsb0%3D) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30692261) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20as%20a%20target%20for%20protection%20against%20cardiomyopathy&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1821022116&volume=116&pages=2672-2680&publication_year=2019&author=Fang%2CX)
- Dixon, S. J. & Stockwell, B. R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9–17 (2014).
[Article](https://doi.org/10.1038%2Fnchembio.1416) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhvFCjtrzO) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24346035) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20iron%20and%20reactive%20oxygen%20species%20in%20cell%20death&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio.1416&volume=10&pages=9-17&publication_year=2014&author=Dixon%2CSJ&author=Stockwell%2CBR)
- Wang, H. et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66, 449–465 (2017).
[Article](https://doi.org/10.1002%2Fhep.29117) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtF2qs7nF) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28195347) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Characterization%20of%20ferroptosis%20in%20murine%20models%20of%20hemochromatosis&journal=Hepatology&doi=10.1002%2Fhep.29117&volume=66&pages=449-465&publication_year=2017&author=Wang%2CH)
- Devos, D. et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid. Redox Signal. 21, 195–210 (2014).
[Article](https://doi.org/10.1089%2Fars.2013.5593) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXpvVWmurk%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060813) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24251381) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20chelatable%20iron%20as%20a%20therapeutic%20modality%20in%20Parkinson%E2%80%99s%20disease&journal=Antioxid.%20Redox%20Signal.&doi=10.1089%2Fars.2013.5593&volume=21&pages=195-210&publication_year=2014&author=Devos%2CD)
- Ayton, S., Lei, P. & Bush, A. I. Metallostasis in Alzheimer’s disease. Free Radic. Biol. Med. 62, 76–89 (2013).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2012.10.558) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhslymtrnN) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23142767) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metallostasis%20in%20Alzheimer%E2%80%99s%20disease&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2012.10.558&volume=62&pages=76-89&publication_year=2013&author=Ayton%2CS&author=Lei%2CP&author=Bush%2CAI)
- Conrad, M., Angeli, J. P., Vandenabeele, P. & Stockwell, B. R. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15, 348–366 (2016).
[Article](https://doi.org/10.1038%2Fnrd.2015.6) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XoslSrtQ%3D%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531857) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26775689) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulated%20necrosis%3A%20disease%20relevance%20and%20therapeutic%20opportunities&journal=Nat.%20Rev.%20Drug%20Discov.&doi=10.1038%2Fnrd.2015.6&volume=15&pages=348-366&publication_year=2016&author=Conrad%2CM&author=Angeli%2CJP&author=Vandenabeele%2CP&author=Stockwell%2CBR)
- Kontoghiorghe, C. N. & Kontoghiorghes, G. J. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Des. Devel. Ther. 10, 465–481 (2016).
[Article](https://doi.org/10.2147%2FDDDT.S79458) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXmtFOmt7o%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745840) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26893541) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Efficacy%20and%20safety%20of%20iron-chelation%20therapy%20with%20deferoxamine%2C%20deferiprone%2C%20and%20deferasirox%20for%20the%20treatment%20of%20iron-loaded%20patients%20with%20non-transfusion-dependent%20thalassemia%20syndromes&journal=Drug%20Des.%20Devel.%20Ther.&doi=10.2147%2FDDDT.S79458&volume=10&pages=465-481&publication_year=2016&author=Kontoghiorghe%2CCN&author=Kontoghiorghes%2CGJ)
- Spangler, B. et al. A reactivity-based probe of the intracellular labile ferrous iron pool. Nat. Chem. Biol. 12, 680–685 (2016).
[Article](https://doi.org/10.1038%2Fnchembio.2116) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhtVKntLfO) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990480) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27376690) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20reactivity-based%20probe%20of%20the%20intracellular%20labile%20ferrous%20iron%20pool&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio.2116&volume=12&pages=680-685&publication_year=2016&author=Spangler%2CB)
- Muir, R. K. et al. Measuring dynamic changes in the labile iron pool in vivo with a reactivity-based probe for positron emission tomography. ACS Cent. Sci. 5, 727–736 (2019).
[Article](https://doi.org/10.1021%2Facscentsci.9b00240) [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXmsVahu7g%3D) [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487455) [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31041393) [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Measuring%20dynamic%20changes%20in%20the%20labile%20iron%20pool%20in%20vivo%20with%20a%20reactivity-based%20probe%20for%20positron%20emission%20tomography&journal=ACS%20Cent.%20Sci.&doi=10.1021%2Facscentsci.9b00240&volume=5&pages=727-736&publication_year=2019&author=Muir%2CRK)