Albendazole inhibits colon cancer progression and therapy resistance by targeting ubiquitin ligase RNF20

contenido
  1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021;71:209–49.
[Article](https://doi.org/10.3322%2Fcaac.21660)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33538338)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Global%20Cancer%20Statistics%202020%3A%20GLOBOCAN%20Estimates%20of%20Incidence%20and%20Mortality%20Worldwide%20for%2036%20Cancers%20in%20185%20Countries&journal=CA%20Cancer%20J%20Clin&doi=10.3322%2Fcaac.21660&volume=71&pages=209-49&publication_year=2021&author=Sung%2CH&author=Ferlay%2CJ&author=Siegel%2CRL&author=Laversanne%2CM&author=Soerjomataram%2CI&author=Jemal%2CA) 
  1. Fatima I, Uppada JP, Chhonker YS, Gowrikumar S, Barman S, Roy S, et al. Identification and characterization of a first-generation inhibitor of claudin-1 in colon cancer progression and metastasis. Biomed Pharmacother. 2023;159:114255.
[Article](https://doi.org/10.1016%2Fj.biopha.2023.114255)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhslKksrw%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36696800)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10824272)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identification%20and%20characterization%20of%20a%20first-generation%20inhibitor%20of%20claudin-1%20in%20colon%20cancer%20progression%20and%20metastasis&journal=Biomed%20Pharmacother&doi=10.1016%2Fj.biopha.2023.114255&volume=159&publication_year=2023&author=Fatima%2CI&author=Uppada%2CJP&author=Chhonker%2CYS&author=Gowrikumar%2CS&author=Barman%2CS&author=Roy%2CS) 
  1. Miller KD, Nogueira L, Devasia T, Mariotto AB, Yabroff KR, Jemal A, et al. Cancer treatment and survivorship statistics, 2022. CA Cancer J Clin. 2022;72:409–36.
[Article](https://doi.org/10.3322%2Fcaac.21731)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35736631)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cancer%20treatment%20and%20survivorship%20statistics%2C%202022&journal=CA%20Cancer%20J%20Clin&doi=10.3322%2Fcaac.21731&volume=72&pages=409-36&publication_year=2022&author=Miller%2CKD&author=Nogueira%2CL&author=Devasia%2CT&author=Mariotto%2CAB&author=Yabroff%2CKR&author=Jemal%2CA) 
  1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73:17–48.
[Article](https://doi.org/10.3322%2Fcaac.21763)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36633525)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cancer%20statistics%2C%202023&journal=CA%20Cancer%20J%20Clin&doi=10.3322%2Fcaac.21763&volume=73&pages=17-48&publication_year=2023&author=Siegel%2CRL&author=Miller%2CKD&author=Wagle%2CNS&author=Jemal%2CA) 
  1. Ciardiello F, Ciardiello D, Martini G, Napolitano S, Tabernero J, Cervantes A. Clinical management of metastatic colorectal cancer in the era of precision medicine. CA Cancer J Clin. 2022;72:372–401.
[Article](https://doi.org/10.3322%2Fcaac.21728)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35472088)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Clinical%20management%20of%20metastatic%20colorectal%20cancer%20in%20the%20era%20of%20precision%20medicine&journal=CA%20Cancer%20J%20Clin&doi=10.3322%2Fcaac.21728&volume=72&pages=372-401&publication_year=2022&author=Ciardiello%2CF&author=Ciardiello%2CD&author=Martini%2CG&author=Napolitano%2CS&author=Tabernero%2CJ&author=Cervantes%2CA) 
  1. Xie YH, Chen YX, Fang JY. Comprehensive review of targeted therapy for colorectal cancer. Signal Transduct Target Ther. 2020;5:22.
[Article](https://doi.org/10.1038%2Fs41392-020-0116-z)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXlvV2msLg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32296018)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082344)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Comprehensive%20review%20of%20targeted%20therapy%20for%20colorectal%20cancer&journal=Signal%20Transduct%20Target%20Ther&doi=10.1038%2Fs41392-020-0116-z&volume=5&publication_year=2020&author=Xie%2CYH&author=Chen%2CYX&author=Fang%2CJY) 
  1. Modest DP, Rivera F, Bachet JB, de Braud F, Pietrantonio F, Koukakis R, et al. Panitumumab-based maintenance after oxaliplatin discontinuation in metastatic colorectal cancer: A retrospective analysis of two randomised trials. Int J Cancer. 2019;145:576–85.
[Article](https://doi.org/10.1002%2Fijc.32110)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhslCrs70%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30614531)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6590196)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Panitumumab-based%20maintenance%20after%20oxaliplatin%20discontinuation%20in%20metastatic%20colorectal%20cancer%3A%20A%20retrospective%20analysis%20of%20two%20randomised%20trials&journal=Int%20J%20Cancer&doi=10.1002%2Fijc.32110&volume=145&pages=576-85&publication_year=2019&author=Modest%2CDP&author=Rivera%2CF&author=Bachet%2CJB&author=Braud%2CF&author=Pietrantonio%2CF&author=Koukakis%2CR) 
  1. Hu T, Li Z, Gao CY, Cho CH. Mechanisms of drug resistance in colon cancer and its therapeutic strategies. World J Gastroenterol. 2016;22:6876–89.
[Article](https://doi.org/10.3748%2Fwjg.v22.i30.6876)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhslWhsbrO)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27570424)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4974586)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mechanisms%20of%20drug%20resistance%20in%20colon%20cancer%20and%20its%20therapeutic%20strategies&journal=World%20J%20Gastroenterol&doi=10.3748%2Fwjg.v22.i30.6876&volume=22&pages=6876-89&publication_year=2016&author=Hu%2CT&author=Li%2CZ&author=Gao%2CCY&author=Cho%2CCH) 
  1. El Zarif T, Yibirin M, De Oliveira-Gomes D, Machaalani M, Nawfal R, Bittar G, et al. Overcoming Therapy Resistance in Colon Cancer by Drug Repurposing. Cancers (Basel). 2022;14:2105.
[Article](https://doi.org/10.3390%2Fcancers14092105)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhtlGgtr3F)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35565237)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Overcoming%20Therapy%20Resistance%20in%20Colon%20Cancer%20by%20Drug%20Repurposing&journal=Cancers%20%28Basel%29&doi=10.3390%2Fcancers14092105&volume=14&publication_year=2022&author=El%20Zarif%2CT&author=Yibirin%2CM&author=Oliveira-Gomes%2CD&author=Machaalani%2CM&author=Nawfal%2CR&author=Bittar%2CG) 
  1. Yeu Y, Yoon Y, Park S. Protein localization vector propagation: a method for improving the accuracy of drug repositioning. Mol Biosyst. 2015;11:2096–102.
[Article](https://doi.org/10.1039%2FC5MB00306G)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXosVaqsrk%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25998487)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Protein%20localization%20vector%20propagation%3A%20a%20method%20for%20improving%20the%20accuracy%20of%20drug%20repositioning&journal=Mol%20Biosyst&doi=10.1039%2FC5MB00306G&volume=11&pages=2096-102&publication_year=2015&author=Yeu%2CY&author=Yoon%2CY&author=Park%2CS) 
  1. Scannell JW, Blanckley A, Boldon H, Warrington B. Diagnosing the decline in pharmaceutical R&D efficiency. Nat Rev Drug Discov. 2012;11:191–200.
[Article](https://doi.org/10.1038%2Fnrd3681)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XivFyhtrY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22378269)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Diagnosing%20the%20decline%20in%20pharmaceutical%20R%26D%20efficiency&journal=Nat%20Rev%20Drug%20Discov&doi=10.1038%2Fnrd3681&volume=11&pages=191-200&publication_year=2012&author=Scannell%2CJW&author=Blanckley%2CA&author=Boldon%2CH&author=Warrington%2CB) 
  1. Horton J. Albendazole: a review of anthelmintic efficacy and safety in humans. Parasitology. 2000;121:S113–S132.
[Article](https://doi.org/10.1017%2FS0031182000007290)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11386684)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Albendazole%3A%20a%20review%20of%20anthelmintic%20efficacy%20and%20safety%20in%20humans&journal=Parasitology.&doi=10.1017%2FS0031182000007290&volume=121&pages=S113-S132&publication_year=2000&author=Horton%2CJ) 
  1. Conterno LO, Turchi MD, Correa I, Monteiro, de Barros Almeida RA. Anthelmintic drugs for treating ascariasis. Cochrane Database Syst Rev. 2020;4:CD010599.
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32289194)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Anthelmintic%20drugs%20for%20treating%20ascariasis&journal=Cochrane%20Database%20Syst%20Rev&volume=4&publication_year=2020&author=Conterno%2CLO&author=Turchi%2CMD&author=Correa%2CI&author=Monteiro%2C&author=Barros%20Almeida%2CRA) 
  1. Zhou F, Du J, Wang J. Albendazole inhibits HIF-1alpha-dependent glycolysis and VEGF expression in non-small cell lung cancer cells. Mol Cell Biochem. 2017;428:171–8.
[Article](https://link.springer.com/doi/10.1007/s11010-016-2927-3)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXnslelsg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28063005)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Albendazole%20inhibits%20HIF-1alpha-dependent%20glycolysis%20and%20VEGF%20expression%20in%20non-small%20cell%20lung%20cancer%20cells&journal=Mol%20Cell%20Biochem&doi=10.1007%2Fs11010-016-2927-3&volume=428&pages=171-8&publication_year=2017&author=Zhou%2CF&author=Du%2CJ&author=Wang%2CJ) 
  1. Pourgholami MH, Cai ZY, Wang L, Badar S, Links M, Morris DL. Inhibition of cell proliferation, vascular endothelial growth factor and tumor growth by albendazole. Cancer Invest. 2009;27:171–7.
[Article](https://doi.org/10.1080%2F07357900802210752)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXktFKitb4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19235589)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inhibition%20of%20cell%20proliferation%2C%20vascular%20endothelial%20growth%20factor%20and%20tumor%20growth%20by%20albendazole&journal=Cancer%20Invest&doi=10.1080%2F07357900802210752&volume=27&pages=171-7&publication_year=2009&author=Pourgholami%2CMH&author=Cai%2CZY&author=Wang%2CL&author=Badar%2CS&author=Links%2CM&author=Morris%2CDL) 
  1. Pourgholami MH, Cai ZY, Badar S, Wangoo K, Poruchynsky MS, Morris DL. Potent inhibition of tumoral hypoxia-inducible factor 1alpha by albendazole. BMC Cancer. 2010;10:143.
[Article](https://link.springer.com/doi/10.1186/1471-2407-10-143)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20398289)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2873385)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Potent%20inhibition%20of%20tumoral%20hypoxia-inducible%20factor%201alpha%20by%20albendazole&journal=BMC%20Cancer&doi=10.1186%2F1471-2407-10-143&volume=10&publication_year=2010&author=Pourgholami%2CMH&author=Cai%2CZY&author=Badar%2CS&author=Wangoo%2CK&author=Poruchynsky%2CMS&author=Morris%2CDL) 
  1. Pourgholami MH, Khachigian LM, Fahmy RG, Badar S, Wang L, Chu SW, et al. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis. Biochem Biophys Res Commun. 2010;397:729–34.
[Article](https://doi.org/10.1016%2Fj.bbrc.2010.06.019)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXoslahu78%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20537982)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Albendazole%20inhibits%20endothelial%20cell%20migration%2C%20tube%20formation%2C%20vasopermeability%2C%20VEGF%20receptor-2%20expression%20and%20suppresses%20retinal%20neovascularization%20in%20ROP%20model%20of%20angiogenesis&journal=Biochem%20Biophys%20Res%20Commun&doi=10.1016%2Fj.bbrc.2010.06.019&volume=397&pages=729-34&publication_year=2010&author=Pourgholami%2CMH&author=Khachigian%2CLM&author=Fahmy%2CRG&author=Badar%2CS&author=Wang%2CL&author=Chu%2CSW) 
  1. Wang LJ, Lee YC, Huang CH, Shi YJ, Chen YJ, Pei SN, et al. Non-mitotic effect of albendazole triggers apoptosis of human leukemia cells via SIRT3/ROS/p38 MAPK/TTP axis-mediated TNF-alpha upregulation. Biochem Pharm. 2019;162:154–68.
[Article](https://doi.org/10.1016%2Fj.bcp.2018.11.003)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXit1yms7rJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30414389)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Non-mitotic%20effect%20of%20albendazole%20triggers%20apoptosis%20of%20human%20leukemia%20cells%20via%20SIRT3%2FROS%2Fp38%20MAPK%2FTTP%20axis-mediated%20TNF-alpha%20upregulation&journal=Biochem%20Pharm&doi=10.1016%2Fj.bcp.2018.11.003&volume=162&pages=154-68&publication_year=2019&author=Wang%2CLJ&author=Lee%2CYC&author=Huang%2CCH&author=Shi%2CYJ&author=Chen%2CYJ&author=Pei%2CSN) 
  1. Patel K, Doudican NA, Schiff PB, Orlow SJ. Albendazole sensitizes cancer cells to ionizing radiation. Radiat Oncol. 2011;6:160.
[Article](https://link.springer.com/doi/10.1186/1748-717X-6-160)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XjvFSisQ%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22094106)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3231941)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Albendazole%20sensitizes%20cancer%20cells%20to%20ionizing%20radiation&journal=Radiat%20Oncol&doi=10.1186%2F1748-717X-6-160&volume=6&publication_year=2011&author=Patel%2CK&author=Doudican%2CNA&author=Schiff%2CPB&author=Orlow%2CSJ) 
  1. Jung YY, Baek SH, Ha IJ, Ahn KS. Regulation of apoptosis and autophagy by albendazole in human colon adenocarcinoma cells. Biochimie. 2022;198:155–66.
[Article](https://doi.org/10.1016%2Fj.biochi.2022.04.014)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38Xht1altbrE)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35504402)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20apoptosis%20and%20autophagy%20by%20albendazole%20in%20human%20colon%20adenocarcinoma%20cells&journal=Biochimie.&doi=10.1016%2Fj.biochi.2022.04.014&volume=198&pages=155-66&publication_year=2022&author=Jung%2CYY&author=Baek%2CSH&author=Ha%2CIJ&author=Ahn%2CKS) 
  1. Pourgholami MH, Akhter J, Wang L, Lu Y, Morris DL. Antitumor activity of albendazole against the human colorectal cancer cell line HT-29: in vitro and in a xenograft model of peritoneal carcinomatosis. Cancer Chemother Pharm. 2005;55:425–32.
[Article](https://link.springer.com/doi/10.1007/s00280-004-0927-6)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXjtVWmtrw%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Antitumor%20activity%20of%20albendazole%20against%20the%20human%20colorectal%20cancer%20cell%20line%20HT-29%3A%20in%20vitro%20and%20in%20a%20xenograft%20model%20of%20peritoneal%20carcinomatosis&journal=Cancer%20Chemother%20Pharm&doi=10.1007%2Fs00280-004-0927-6&volume=55&pages=425-32&publication_year=2005&author=Pourgholami%2CMH&author=Akhter%2CJ&author=Wang%2CL&author=Lu%2CY&author=Morris%2CDL) 
  1. Gowrikumar S, Primeaux M, Pravoverov K, Wu C, Szeglin BC, Sauve CG, et al. A claudin-based molecular signature identifies high-risk, chemoresistant colorectal cancer patients. Cells. 2021;10:2211.
[Article](https://doi.org/10.3390%2Fcells10092211)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXislCgtrvJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34571860)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8466455)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20claudin-based%20molecular%20signature%20identifies%20high-risk%2C%20chemoresistant%20colorectal%20cancer%20patients&journal=Cells.&doi=10.3390%2Fcells10092211&volume=10&publication_year=2021&author=Gowrikumar%2CS&author=Primeaux%2CM&author=Pravoverov%2CK&author=Wu%2CC&author=Szeglin%2CBC&author=Sauve%2CCG) 
  1. Sato T, Stange DE, Ferrante M, Vries RG, Van Es JH, Van den Brink S, et al. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett’s epithelium. Gastroenterology. 2011;141:1762–72.
[Article](https://doi.org/10.1053%2Fj.gastro.2011.07.050)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhtlOksb3E)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21889923)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Long-term%20expansion%20of%20epithelial%20organoids%20from%20human%20colon%2C%20adenoma%2C%20adenocarcinoma%2C%20and%20Barrett%E2%80%99s%20epithelium&journal=Gastroenterology.&doi=10.1053%2Fj.gastro.2011.07.050&volume=141&pages=1762-72&publication_year=2011&author=Sato%2CT&author=Stange%2CDE&author=Ferrante%2CM&author=Vries%2CRG&author=Es%2CJH&author=Brink%2CS) 
  1. Fatima I, Barman S, Uppada J, Chauhan S, Rauth S, Rachagani S, et al. MASTL regulates EGFR signaling to impact pancreatic cancer progression. Oncogene. 2021;40:5691–704.
[Article](https://doi.org/10.1038%2Fs41388-021-01951-x)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhs1yitLnL)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34331012)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8817225)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=MASTL%20regulates%20EGFR%20signaling%20to%20impact%20pancreatic%20cancer%20progression&journal=Oncogene.&doi=10.1038%2Fs41388-021-01951-x&volume=40&pages=5691-704&publication_year=2021&author=Fatima%2CI&author=Barman%2CS&author=Uppada%2CJ&author=Chauhan%2CS&author=Rauth%2CS&author=Rachagani%2CS) 
  1. New-Aaron M, Koganti SS, Ganesan M, Kanika S, Kumar V, Wang W, et al. Hepatocyte-specific triggering of hepatic stellate cell profibrotic activation by apoptotic bodies: the role of hepatoma-derived growth factor, HIV, and ethanol. Int J Mol Sci. 2023;24:5346.
[Article](https://doi.org/10.3390%2Fijms24065346)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXmvFCrsro%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36982417)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10049507)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepatocyte-specific%20triggering%20of%20hepatic%20stellate%20cell%20profibrotic%20activation%20by%20apoptotic%20bodies%3A%20the%20role%20of%20hepatoma-derived%20growth%20factor%2C%20HIV%2C%20and%20ethanol&journal=Int%20J%20Mol%20Sci&doi=10.3390%2Fijms24065346&volume=24&publication_year=2023&author=New-Aaron%2CM&author=Koganti%2CSS&author=Ganesan%2CM&author=Kanika%2CS&author=Kumar%2CV&author=Wang%2CW) 
  1. Fatima I, Saxena R, Kharkwal G, Hussain MK, Yadav N, Hajela K, et al. The anti-proliferative effect of 2-[piperidinoethoxyphenyl]-3-[4-hydroxyphenyl]-2H-benzo(b) pyran is potentiated via induction of estrogen receptor beta and p21 in human endometrial adenocarcinoma cells. J Steroid Biochem Mol Biol. 2013;138:123–31.
[Article](https://doi.org/10.1016%2Fj.jsbmb.2013.04.005)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhsleru7%2FI)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23688837)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20anti-proliferative%20effect%20of%202-%5Bpiperidinoethoxyphenyl%5D-3-%5B4-hydroxyphenyl%5D-2H-benzo%28b%29%20pyran%20is%20potentiated%20via%20induction%20of%20estrogen%20receptor%20beta%20and%20p21%20in%20human%20endometrial%20adenocarcinoma%20cells&journal=J%20Steroid%20Biochem%20Mol%20Biol&doi=10.1016%2Fj.jsbmb.2013.04.005&volume=138&pages=123-31&publication_year=2013&author=Fatima%2CI&author=Saxena%2CR&author=Kharkwal%2CG&author=Hussain%2CMK&author=Yadav%2CN&author=Hajela%2CK) 
  1. Fatima I, El-Ayachi I, Taotao L, Lillo MA, Krutilina RI, Seagroves TN, et al. The natural compound Jatrophone interferes with Wnt/beta-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer. PLoS One. 2017;12:e0189864.
[Article](https://doi.org/10.1371%2Fjournal.pone.0189864)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29281678)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5744972)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20natural%20compound%20Jatrophone%20interferes%20with%20Wnt%2Fbeta-catenin%20signaling%20and%20inhibits%20proliferation%20and%20EMT%20in%20human%20triple-negative%20breast%20cancer&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0189864&volume=12&publication_year=2017&author=Fatima%2CI&author=El-Ayachi%2CI&author=Taotao%2CL&author=Lillo%2CMA&author=Krutilina%2CRI&author=Seagroves%2CTN) 
  1. Kumar B, Ahmad R, Sharma S, Gowrikumar S, Primeaux M, Rana S, et al. PIK3C3 inhibition promotes sensitivity to colon cancer therapy by inhibiting cancer stem cells. Cancers (Basel). 2021;13:2168.
[Article](https://doi.org/10.3390%2Fcancers13092168)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXis1WrtLnF)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33946505)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=PIK3C3%20inhibition%20promotes%20sensitivity%20to%20colon%20cancer%20therapy%20by%20inhibiting%20cancer%20stem%20cells&journal=Cancers%20%28Basel%29&doi=10.3390%2Fcancers13092168&volume=13&publication_year=2021&author=Kumar%2CB&author=Ahmad%2CR&author=Sharma%2CS&author=Gowrikumar%2CS&author=Primeaux%2CM&author=Rana%2CS) 
  1. Luzak B, Siarkiewicz P, Boncler M. An evaluation of a new high-sensitivity PrestoBlue assay for measuring cell viability and drug cytotoxicity using EA.hy926 endothelial cells. Toxicol Vitr. 2022;83:105407.
[Article](https://doi.org/10.1016%2Fj.tiv.2022.105407)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhsFKjsLjF)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=An%20evaluation%20of%20a%20new%20high-sensitivity%20PrestoBlue%20assay%20for%20measuring%20cell%20viability%20and%20drug%20cytotoxicity%20using%20EA.hy926%20endothelial%20cells&journal=Toxicol%20Vitr&doi=10.1016%2Fj.tiv.2022.105407&volume=83&publication_year=2022&author=Luzak%2CB&author=Siarkiewicz%2CP&author=Boncler%2CM) 
  1. Kaemmerer E, Klaus C, Jeon MK, Gassler N. Molecular classification of colorectal carcinomas: the genotype-to-phenotype relation. World J Gastroenterol. 2013;19:8163–7.
[Article](https://doi.org/10.3748%2Fwjg.v19.i45.8163)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXlsVajurY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24363505)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857437)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Molecular%20classification%20of%20colorectal%20carcinomas%3A%20the%20genotype-to-phenotype%20relation&journal=World%20J%20Gastroenterol&doi=10.3748%2Fwjg.v19.i45.8163&volume=19&pages=8163-7&publication_year=2013&author=Kaemmerer%2CE&author=Klaus%2CC&author=Jeon%2CMK&author=Gassler%2CN) 
  1. Zhu L, Yang Q, Hu R, Li Y, Peng Y, Liu H, et al. Novel therapeutic strategy for melanoma based on albendazole and the CDK4/6 inhibitor palbociclib. Sci Rep. 2022;12:5706.
[Article](https://doi.org/10.1038%2Fs41598-022-09592-0)  [ADS](http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2022NatSR..12.5706Z)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XptVekt7Y%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35383224)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8983746)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Novel%20therapeutic%20strategy%20for%20melanoma%20based%20on%20albendazole%20and%20the%20CDK4%2F6%20inhibitor%20palbociclib&journal=Sci%20Rep&doi=10.1038%2Fs41598-022-09592-0&volume=12&publication_year=2022&author=Zhu%2CL&author=Yang%2CQ&author=Hu%2CR&author=Li%2CY&author=Peng%2CY&author=Liu%2CH) 
  1. Petersen J, Baird SK. Treatment of breast and colon cancer cell lines with anti-helmintic benzimidazoles mebendazole or albendazole results in selective apoptotic cell death. J Cancer Res Clin Oncol. 2021;147:2945–53.
[Article](https://link.springer.com/doi/10.1007/s00432-021-03698-0)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXitVSks73J)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34148157)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Treatment%20of%20breast%20and%20colon%20cancer%20cell%20lines%20with%20anti-helmintic%20benzimidazoles%20mebendazole%20or%20albendazole%20results%20in%20selective%20apoptotic%20cell%20death&journal=J%20Cancer%20Res%20Clin%20Oncol&doi=10.1007%2Fs00432-021-03698-0&volume=147&pages=2945-53&publication_year=2021&author=Petersen%2CJ&author=Baird%2CSK) 
  1. Fatima I, El-Ayachi I, Taotao L, Angeles Lillo M, Krutilina RI, Seagroves TN, et al. Correction: The natural compound Jatrophone interferes with Wnt/beta-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer. PLoS One. 2018;13:e0197796.
[Article](https://doi.org/10.1371%2Fjournal.pone.0197796)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29771986)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957371)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Correction%3A%20The%20natural%20compound%20Jatrophone%20interferes%20with%20Wnt%2Fbeta-catenin%20signaling%20and%20inhibits%20proliferation%20and%20EMT%20in%20human%20triple-negative%20breast%20cancer&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0197796&volume=13&publication_year=2018&author=Fatima%2CI&author=El-Ayachi%2CI&author=Taotao%2CL&author=Angeles%20Lillo%2CM&author=Krutilina%2CRI&author=Seagroves%2CTN) 
  1. Xia W, Spector S, Hardy L, Zhao S, Saluk A, Alemane L, et al. Tumor selective G2/M cell cycle arrest and apoptosis of epithelial and hematological malignancies by BBL22, a benzazepine. Proc Natl Acad Sci USA. 2000;97:7494–9.
[Article](https://doi.org/10.1073%2Fpnas.97.13.7494)  [ADS](http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2000PNAS...97.7494X)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXksVKhs7o%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10861014)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC16573)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Tumor%20selective%20G2%2FM%20cell%20cycle%20arrest%20and%20apoptosis%20of%20epithelial%20and%20hematological%20malignancies%20by%20BBL22%2C%20a%20benzazepine&journal=Proc%20Natl%20Acad%20Sci%20USA&doi=10.1073%2Fpnas.97.13.7494&volume=97&pages=7494-9&publication_year=2000&author=Xia%2CW&author=Spector%2CS&author=Hardy%2CL&author=Zhao%2CS&author=Saluk%2CA&author=Alemane%2CL) 
  1. Hulkower KI, Herber RL. Cell migration and invasion assays as tools for drug discovery. Pharmaceutics. 2011;3:107–24.
[Article](https://doi.org/10.3390%2Fpharmaceutics3010107)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXktVWiu7g%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24310428)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3857040)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cell%20migration%20and%20invasion%20assays%20as%20tools%20for%20drug%20discovery&journal=Pharmaceutics.&doi=10.3390%2Fpharmaceutics3010107&volume=3&pages=107-24&publication_year=2011&author=Hulkower%2CKI&author=Herber%2CRL) 
  1. Kowtharapu BS, Murin R, Junemann AGM, Stachs O. Role of corneal stromal cells on epithelial cell function during wound healing. Int J Mol Sci. 2018;19:464.
[Article](https://doi.org/10.3390%2Fijms19020464)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29401709)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5855686)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Role%20of%20corneal%20stromal%20cells%20on%20epithelial%20cell%20function%20during%20wound%20healing&journal=Int%20J%20Mol%20Sci&doi=10.3390%2Fijms19020464&volume=19&publication_year=2018&author=Kowtharapu%2CBS&author=Murin%2CR&author=Junemann%2CAGM&author=Stachs%2CO) 
  1. Fatima I, El-Ayachi I, Playa HC, Alva-Ornelas JA, Khalid AB, Kuenzinger WL, et al. Simultaneous multi-organ metastases from chemo-resistant triple-negative breast cancer are prevented by interfering with WNT-signaling. Cancers (Basel). 2019;11:2039.
[Article](https://doi.org/10.3390%2Fcancers11122039)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXptVyhsb8%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31861131)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Simultaneous%20multi-organ%20metastases%20from%20chemo-resistant%20triple-negative%20breast%20cancer%20are%20prevented%20by%20interfering%20with%20WNT-signaling&journal=Cancers%20%28Basel%29&doi=10.3390%2Fcancers11122039&volume=11&publication_year=2019&author=Fatima%2CI&author=El-Ayachi%2CI&author=Playa%2CHC&author=Alva-Ornelas%2CJA&author=Khalid%2CAB&author=Kuenzinger%2CWL) 
  1. Ehteda A, Galettis P, Pillai K, Morris DL. Combination of albendazole and 2-methoxyestradiol significantly improves the survival of HCT-116 tumor-bearing nude mice. BMC Cancer. 2013;13:86.
[Article](https://link.springer.com/doi/10.1186/1471-2407-13-86)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXnvFWqurg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23432760)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3606618)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Combination%20of%20albendazole%20and%202-methoxyestradiol%20significantly%20improves%20the%20survival%20of%20HCT-116%20tumor-bearing%20nude%20mice&journal=BMC%20Cancer&doi=10.1186%2F1471-2407-13-86&volume=13&publication_year=2013&author=Ehteda%2CA&author=Galettis%2CP&author=Pillai%2CK&author=Morris%2CDL) 
  1. Will Castro L, Pieters W, Alemdehy MF, Aslam MA, Buoninfante OA, Raaijmakers JA, et al. The widely used antihelmintic drug albendazole is a potent inducer of loss of heterozygosity. Front Pharm. 2021;12:596535.
[Article](https://doi.org/10.3389%2Ffphar.2021.596535)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20widely%20used%20antihelmintic%20drug%20albendazole%20is%20a%20potent%20inducer%20of%20loss%20of%20heterozygosity&journal=Front%20Pharm&doi=10.3389%2Ffphar.2021.596535&volume=12&publication_year=2021&author=Will%20Castro%2CL&author=Pieters%2CW&author=Alemdehy%2CMF&author=Aslam%2CMA&author=Buoninfante%2COA&author=Raaijmakers%2CJA) 
  1. Duan Y, Huo D, Gao J, Wu H, Ye Z, Liu Z, et al. Corrigendum: Ubiquitin ligase RNF20/40 facilitates spindle assembly and promotes breast carcinogenesis through stabilizing motor protein Eg5. Nat Commun. 2016;7:13462.
[Article](https://doi.org/10.1038%2Fncomms13462)  [ADS](http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2016NatCo...713462D)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhvVSitLfE)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27811853)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5097166)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Corrigendum%3A%20Ubiquitin%20ligase%20RNF20%2F40%20facilitates%20spindle%20assembly%20and%20promotes%20breast%20carcinogenesis%20through%20stabilizing%20motor%20protein%20Eg5&journal=Nat%20Commun&doi=10.1038%2Fncomms13462&volume=7&publication_year=2016&author=Duan%2CY&author=Huo%2CD&author=Gao%2CJ&author=Wu%2CH&author=Ye%2CZ&author=Liu%2CZ) 
  1. Pavri R, Zhu B, Li G, Trojer P, Mandal S, Shilatifard A, et al. Histone H2B monoubiquitination functions cooperatively with FACT to regulate elongation by RNA polymerase II. Cell. 2006;125:703–17.
[Article](https://doi.org/10.1016%2Fj.cell.2006.04.029)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XltlSkt7w%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16713563)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Histone%20H2B%20monoubiquitination%20functions%20cooperatively%20with%20FACT%20to%20regulate%20elongation%20by%20RNA%20polymerase%20II&journal=Cell.&doi=10.1016%2Fj.cell.2006.04.029&volume=125&pages=703-17&publication_year=2006&author=Pavri%2CR&author=Zhu%2CB&author=Li%2CG&author=Trojer%2CP&author=Mandal%2CS&author=Shilatifard%2CA) 
  1. Schulze JM, Jackson J, Nakanishi S, Gardner JM, Hentrich T, Haug J, et al. Linking cell cycle to histone modifications: SBF and H2B monoubiquitination machinery and cell-cycle regulation of H3K79 dimethylation. Mol Cell. 2009;35:626–41.
[Article](https://doi.org/10.1016%2Fj.molcel.2009.07.017)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhsVChsr3E)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19682934)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3222332)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Linking%20cell%20cycle%20to%20histone%20modifications%3A%20SBF%20and%20H2B%20monoubiquitination%20machinery%20and%20cell-cycle%20regulation%20of%20H3K79%20dimethylation&journal=Mol%20Cell&doi=10.1016%2Fj.molcel.2009.07.017&volume=35&pages=626-41&publication_year=2009&author=Schulze%2CJM&author=Jackson%2CJ&author=Nakanishi%2CS&author=Gardner%2CJM&author=Hentrich%2CT&author=Haug%2CJ) 
  1. Chandrashekar DS, Bashel B, Balasubramanya SAH, Creighton CJ, Ponce-Rodriguez I, Chakravarthi B, et al. UALCAN: a portal for facilitating tumor subgroup gene expression and survival analyses. Neoplasia. 2017;19:649–58.
[Article](https://doi.org/10.1016%2Fj.neo.2017.05.002)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXovVKhurw%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28732212)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5516091)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=UALCAN%3A%20a%20portal%20for%20facilitating%20tumor%20subgroup%20gene%20expression%20and%20survival%20analyses&journal=Neoplasia.&doi=10.1016%2Fj.neo.2017.05.002&volume=19&pages=649-58&publication_year=2017&author=Chandrashekar%2CDS&author=Bashel%2CB&author=Balasubramanya%2CSAH&author=Creighton%2CCJ&author=Ponce-Rodriguez%2CI&author=Chakravarthi%2CB) 
  1. Parang B, Barrett CW, Williams CS. AOM/DSS model of colitis-associated cancer. Methods Mol Biol. 2016;1422:297–307.
[Article](https://link.springer.com/doi/10.1007/978-1-4939-3603-8_26)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhvFGgsr%2FJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27246042)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5035391)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=AOM%2FDSS%20model%20of%20colitis-associated%20cancer&journal=Methods%20Mol%20Biol&doi=10.1007%2F978-1-4939-3603-8_26&volume=1422&pages=297-307&publication_year=2016&author=Parang%2CB&author=Barrett%2CCW&author=Williams%2CCS) 
  1. Moser AR, Pitot HC, Dove WF. A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 1990;247:322–4.
[Article](https://doi.org/10.1126%2Fscience.2296722)  [ADS](http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1990Sci...247..322R)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK3c7hslWntg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2296722)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20dominant%20mutation%20that%20predisposes%20to%20multiple%20intestinal%20neoplasia%20in%20the%20mouse&journal=Science.&doi=10.1126%2Fscience.2296722&volume=247&pages=322-4&publication_year=1990&author=Moser%2CAR&author=Pitot%2CHC&author=Dove%2CWF) 
  1. Schneider D, Chua RL, Molitor N, Hamdan FH, Rettenmeier EM, Prokakis E, et al. The E3 ubiquitin ligase RNF40 suppresses apoptosis in colorectal cancer cells. Clin Epigenetics. 2019;11:98.
[Article](https://link.springer.com/doi/10.1186/s13148-019-0698-x)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31266541)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6604314)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20E3%20ubiquitin%20ligase%20RNF40%20suppresses%20apoptosis%20in%20colorectal%20cancer%20cells&journal=Clin%20Epigenetics&doi=10.1186%2Fs13148-019-0698-x&volume=11&publication_year=2019&author=Schneider%2CD&author=Chua%2CRL&author=Molitor%2CN&author=Hamdan%2CFH&author=Rettenmeier%2CEM&author=Prokakis%2CE) 
  1. Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P, et al. Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. Mol Cell. 2005;20:601–11.
[Article](https://doi.org/10.1016%2Fj.molcel.2005.09.025)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXht12msrzJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16307923)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Monoubiquitination%20of%20human%20histone%20H2B%3A%20the%20factors%20involved%20and%20their%20roles%20in%20HOX%20gene%20regulation&journal=Mol%20Cell&doi=10.1016%2Fj.molcel.2005.09.025&volume=20&pages=601-11&publication_year=2005&author=Zhu%2CB&author=Zheng%2CY&author=Pham%2CAD&author=Mandal%2CSS&author=Erdjument-Bromage%2CH&author=Tempst%2CP) 
  1. Saijo T, Ishii G, Ochiai A, Yoh K, Goto K, Nagai K, et al. Eg5 expression is closely correlated with the response of advanced non-small cell lung cancer to antimitotic agents combined with platinum chemotherapy. Lung Cancer. 2006;54:217–25.
[Article](https://doi.org/10.1016%2Fj.lungcan.2006.06.018)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16934364)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Eg5%20expression%20is%20closely%20correlated%20with%20the%20response%20of%20advanced%20non-small%20cell%20lung%20cancer%20to%20antimitotic%20agents%20combined%20with%20platinum%20chemotherapy&journal=Lung%20Cancer&doi=10.1016%2Fj.lungcan.2006.06.018&volume=54&pages=217-25&publication_year=2006&author=Saijo%2CT&author=Ishii%2CG&author=Ochiai%2CA&author=Yoh%2CK&author=Goto%2CK&author=Nagai%2CK) 
  1. Yan GR, Zou FY, Dang BL, Zhang Y, Yu G, Liu X, et al. Genistein-induced mitotic arrest of gastric cancer cells by downregulating KIF20A, a proteomics study. Proteomics. 2012;12:2391–9.
[Article](https://doi.org/10.1002%2Fpmic.201100652)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhtFCrtrrJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22887948)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Genistein-induced%20mitotic%20arrest%20of%20gastric%20cancer%20cells%20by%20downregulating%20KIF20A%2C%20a%20proteomics%20study&journal=Proteomics.&doi=10.1002%2Fpmic.201100652&volume=12&pages=2391-9&publication_year=2012&author=Yan%2CGR&author=Zou%2CFY&author=Dang%2CBL&author=Zhang%2CY&author=Yu%2CG&author=Liu%2CX) 
  1. Jin Q, Dai Y, Wang Y, Zhang S, Liu G. High kinesin family member 11 expression predicts poor prognosis in patients with clear cell renal cell carcinoma. J Clin Pathol. 2019;72:354–62.
[Article](https://doi.org/10.1136%2Fjclinpath-2018-205390)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXhs1Grt7vJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30819726)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=High%20kinesin%20family%20member%2011%20expression%20predicts%20poor%20prognosis%20in%20patients%20with%20clear%20cell%20renal%20cell%20carcinoma&journal=J%20Clin%20Pathol&doi=10.1136%2Fjclinpath-2018-205390&volume=72&pages=354-62&publication_year=2019&author=Jin%2CQ&author=Dai%2CY&author=Wang%2CY&author=Zhang%2CS&author=Liu%2CG) 
  1. Kim M, Jeong HJ, Ju HM, Song JY, Jang SJ, Choi J. Overexpression of the NEK9-EG5 axis is a novel metastatic marker in pathologic stage T3 colon cancer. Sci Rep. 2023;13:342.
[Article](https://doi.org/10.1038%2Fs41598-022-26249-0)  [ADS](http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2023NatSR..13..342K)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXlvVygsA%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36611072)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825400)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Overexpression%20of%20the%20NEK9-EG5%20axis%20is%20a%20novel%20metastatic%20marker%20in%20pathologic%20stage%20T3%20colon%20cancer&journal=Sci%20Rep&doi=10.1038%2Fs41598-022-26249-0&volume=13&publication_year=2023&author=Kim%2CM&author=Jeong%2CHJ&author=Ju%2CHM&author=Song%2CJY&author=Jang%2CSJ&author=Choi%2CJ) 
  1. Sun L, Lu J, Niu Z, Ding K, Bi D, Liu S, et al. A potent chemotherapeutic strategy with Eg5 inhibitor against gemcitabine resistant bladder cancer. PLoS One. 2015;10:e0144484.
[Article](https://doi.org/10.1371%2Fjournal.pone.0144484)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26658059)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4675549)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20potent%20chemotherapeutic%20strategy%20with%20Eg5%20inhibitor%20against%20gemcitabine%20resistant%20bladder%20cancer&journal=PLoS%20One&doi=10.1371%2Fjournal.pone.0144484&volume=10&publication_year=2015&author=Sun%2CL&author=Lu%2CJ&author=Niu%2CZ&author=Ding%2CK&author=Bi%2CD&author=Liu%2CS) 
  1. Hicke L. Protein regulation by monoubiquitin. Nat Rev Mol Cell Biol. 2001;2:195–201.
[Article](https://doi.org/10.1038%2F35056583)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXhvFKqt7c%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11265249)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Protein%20regulation%20by%20monoubiquitin&journal=Nat%20Rev%20Mol%20Cell%20Biol&doi=10.1038%2F35056583&volume=2&pages=195-201&publication_year=2001&author=Hicke%2CL) 
  1. Hammond WA, Swaika A, Mody K. Pharmacologic resistance in colorectal cancer: a review. Ther Adv Med Oncol. 2016;8:57–84.
[Article](https://doi.org/10.1177%2F1758834015614530)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XotValsrk%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26753006)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4699262)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pharmacologic%20resistance%20in%20colorectal%20cancer%3A%20a%20review&journal=Ther%20Adv%20Med%20Oncol&doi=10.1177%2F1758834015614530&volume=8&pages=57-84&publication_year=2016&author=Hammond%2CWA&author=Swaika%2CA&author=Mody%2CK) 
  1. de Gramont A, Figer A, Seymour M, Homerin M, Hmissi A, Cassidy J, et al. Leucovorin and fluorouracil with or without oxaliplatin as first-line treatment in advanced colorectal cancer. J Clin Oncol. 2000;18:2938–47.
[Article](https://doi.org/10.1200%2FJCO.2000.18.16.2938)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10944126)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Leucovorin%20and%20fluorouracil%20with%20or%20without%20oxaliplatin%20as%20first-line%20treatment%20in%20advanced%20colorectal%20cancer&journal=J%20Clin%20Oncol&doi=10.1200%2FJCO.2000.18.16.2938&volume=18&pages=2938-47&publication_year=2000&author=Gramont%2CA&author=Figer%2CA&author=Seymour%2CM&author=Homerin%2CM&author=Hmissi%2CA&author=Cassidy%2CJ) 
  1. Pardini B, Kumar R, Naccarati A, Novotny J, Prasad RB, Forsti A, et al. 5-Fluorouracil-based chemotherapy for colorectal cancer and MTHFR/MTRR genotypes. Br J Clin Pharm. 2011;72:162–3.
[Article](https://doi.org/10.1111%2Fj.1365-2125.2010.03892.x)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXps1OmtbY%3D)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=5-Fluorouracil-based%20chemotherapy%20for%20colorectal%20cancer%20and%20MTHFR%2FMTRR%20genotypes&journal=Br%20J%20Clin%20Pharm&doi=10.1111%2Fj.1365-2125.2010.03892.x&volume=72&pages=162-3&publication_year=2011&author=Pardini%2CB&author=Kumar%2CR&author=Naccarati%2CA&author=Novotny%2CJ&author=Prasad%2CRB&author=Forsti%2CA) 
  1. Denise C, Paoli P, Calvani M, Taddei ML, Giannoni E, Kopetz S, et al. 5-fluorouracil resistant colon cancer cells are addicted to OXPHOS to survive and enhance stem-like traits. Oncotarget. 2015;6:41706–21.
[Article](https://doi.org/10.18632%2Foncotarget.5991)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26527315)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4747183)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=5-fluorouracil%20resistant%20colon%20cancer%20cells%20are%20addicted%20to%20OXPHOS%20to%20survive%20and%20enhance%20stem-like%20traits&journal=Oncotarget.&doi=10.18632%2Foncotarget.5991&volume=6&pages=41706-21&publication_year=2015&author=Denise%2CC&author=Paoli%2CP&author=Calvani%2CM&author=Taddei%2CML&author=Giannoni%2CE&author=Kopetz%2CS) 
  1. Sanchez-Diez M, Alegria-Aravena N, Lopez-Montes M, Quiroz-Troncoso J, Gonzalez-Martos R, Menendez-Rey A, et al. Implication of different tumor biomarkers in drug resistance and invasiveness in primary and metastatic colorectal cancer cell lines. Biomedicines. 2022;10:1083.
[Article](https://doi.org/10.3390%2Fbiomedicines10051083)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XhsValu7zE)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35625820)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9139065)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Implication%20of%20different%20tumor%20biomarkers%20in%20drug%20resistance%20and%20invasiveness%20in%20primary%20and%20metastatic%20colorectal%20cancer%20cell%20lines&journal=Biomedicines.&doi=10.3390%2Fbiomedicines10051083&volume=10&publication_year=2022&author=Sanchez-Diez%2CM&author=Alegria-Aravena%2CN&author=Lopez-Montes%2CM&author=Quiroz-Troncoso%2CJ&author=Gonzalez-Martos%2CR&author=Menendez-Rey%2CA) 
  1. Hirschmann-Jax C, Foster AE, Wulf GG, Nuchtern JG, Jax TW, Gobel U, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA. 2004;101:14228–33.
[Article](https://doi.org/10.1073%2Fpnas.0400067101)  [ADS](http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2004PNAS..10114228H)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXosVyltr8%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15381773)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC521140)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20distinct%20%E2%80%9Cside%20population%E2%80%9D%20of%20cells%20with%20high%20drug%20efflux%20capacity%20in%20human%20tumor%20cells&journal=Proc%20Natl%20Acad%20Sci%20USA&doi=10.1073%2Fpnas.0400067101&volume=101&pages=14228-33&publication_year=2004&author=Hirschmann-Jax%2CC&author=Foster%2CAE&author=Wulf%2CGG&author=Nuchtern%2CJG&author=Jax%2CTW&author=Gobel%2CU) 
  1. Longley DB, Johnston PG. Molecular mechanisms of drug resistance. J Pathol. 2005;205:275–92.
[Article](https://doi.org/10.1002%2Fpath.1706)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXhsFOgsrk%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15641020)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Molecular%20mechanisms%20of%20drug%20resistance&journal=J%20Pathol&doi=10.1002%2Fpath.1706&volume=205&pages=275-92&publication_year=2005&author=Longley%2CDB&author=Johnston%2CPG) 
  1. Pantziarka P, Verbaanderd C, Sukhatme V, Rica Capistrano I, Crispino S, Gyawali B, et al. ReDO_DB: the repurposing drugs in oncology database. Ecancermedicalscience. 2018;12:886.
[Article](https://doi.org/10.3332%2Fecancer.2018.886)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30679953)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345075)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ReDO_DB%3A%20the%20repurposing%20drugs%20in%20oncology%20database&journal=Ecancermedicalscience.&doi=10.3332%2Fecancer.2018.886&volume=12&publication_year=2018&author=Pantziarka%2CP&author=Verbaanderd%2CC&author=Sukhatme%2CV&author=Rica%20Capistrano%2CI&author=Crispino%2CS&author=Gyawali%2CB) 
  1. Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673–83.
[Article](https://doi.org/10.1038%2Fnrd1468)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXmtVOhtL8%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15286734)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Drug%20repositioning%3A%20identifying%20and%20developing%20new%20uses%20for%20existing%20drugs&journal=Nat%20Rev%20Drug%20Discov&doi=10.1038%2Fnrd1468&volume=3&pages=673-83&publication_year=2004&author=Ashburn%2CTT&author=Thor%2CKB) 
  1. Lacey E. Mode of action of benzimidazoles. Parasitol Today. 1990;6:112–5.
[Article](https://doi.org/10.1016%2F0169-4758%2890%2990227-U)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK3cXksFWru7s%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15463312)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mode%20of%20action%20of%20benzimidazoles&journal=Parasitol%20Today&doi=10.1016%2F0169-4758%2890%2990227-U&volume=6&pages=112-5&publication_year=1990&author=Lacey%2CE) 
  1. Pourgholami MH, Woon L, Almajd R, Akhter J, Bowery P, Morris DL. In vitro and in vivo suppression of growth of hepatocellular carcinoma cells by albendazole. Cancer Lett. 2001;165:43–49.
[Article](https://doi.org/10.1016%2FS0304-3835%2801%2900382-2)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXhvVahtbw%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11248417)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=In%20vitro%20and%20in%20vivo%20suppression%20of%20growth%20of%20hepatocellular%20carcinoma%20cells%20by%20albendazole&journal=Cancer%20Lett&doi=10.1016%2FS0304-3835%2801%2900382-2&volume=165&pages=43-49&publication_year=2001&author=Pourgholami%2CMH&author=Woon%2CL&author=Almajd%2CR&author=Akhter%2CJ&author=Bowery%2CP&author=Morris%2CDL) 
  1. Pourgholami MH, Yan Cai Z, Lu Y, Wang L, Morris DL. Albendazole: a potent inhibitor of vascular endothelial growth factor and malignant ascites formation in OVCAR-3 tumor-bearing nude mice. Clin Cancer Res. 2006;12:1928–35.
[Article](https://doi.org/10.1158%2F1078-0432.CCR-05-1181)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16551879)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Albendazole%3A%20a%20potent%20inhibitor%20of%20vascular%20endothelial%20growth%20factor%20and%20malignant%20ascites%20formation%20in%20OVCAR-3%20tumor-bearing%20nude%20mice&journal=Clin%20Cancer%20Res&doi=10.1158%2F1078-0432.CCR-05-1181&volume=12&pages=1928-35&publication_year=2006&author=Pourgholami%2CMH&author=Yan%20Cai%2CZ&author=Lu%2CY&author=Wang%2CL&author=Morris%2CDL) 
  1. Laudisi F, Maronek M, Di Grazia A, Monteleone G, Stolfi C. Repositioning of anthelmintic drugs for the treatment of cancers of the digestive system. Int J Mol Sci. 2020;21:4957.
[Article](https://doi.org/10.3390%2Fijms21144957)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitVChsr7L)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32668817)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7404055)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Repositioning%20of%20anthelmintic%20drugs%20for%20the%20treatment%20of%20cancers%20of%20the%20digestive%20system&journal=Int%20J%20Mol%20Sci&doi=10.3390%2Fijms21144957&volume=21&publication_year=2020&author=Laudisi%2CF&author=Maronek%2CM&author=Grazia%2CA&author=Monteleone%2CG&author=Stolfi%2CC) 
  1. Zhang P, Zhang Y, Liu K, Liu B, Xu W, Gao J, et al. Ivermectin induces cell cycle arrest and apoptosis of HeLa cells via mitochondrial pathway. Cell Prolif. 2019;52:e12543.
[Article](https://doi.org/10.1111%2Fcpr.12543)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30515909)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ivermectin%20induces%20cell%20cycle%20arrest%20and%20apoptosis%20of%20HeLa%20cells%20via%20mitochondrial%20pathway&journal=Cell%20Prolif&doi=10.1111%2Fcpr.12543&volume=52&publication_year=2019&author=Zhang%2CP&author=Zhang%2CY&author=Liu%2CK&author=Liu%2CB&author=Xu%2CW&author=Gao%2CJ) 
  1. Shangguan F, Liu Y, Ma L, Qu G, Lv Q, An J, et al. Niclosamide inhibits ovarian carcinoma growth by interrupting cellular bioenergetics. J Cancer. 2020;11:3454–66.
[Article](https://doi.org/10.7150%2Fjca.41418)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsV2rsrnJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32284741)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7150452)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Niclosamide%20inhibits%20ovarian%20carcinoma%20growth%20by%20interrupting%20cellular%20bioenergetics&journal=J%20Cancer&doi=10.7150%2Fjca.41418&volume=11&pages=3454-66&publication_year=2020&author=Shangguan%2CF&author=Liu%2CY&author=Ma%2CL&author=Qu%2CG&author=Lv%2CQ&author=An%2CJ) 
  1. Chen D, Sun X, Zhang X, Cao J. Targeting mitochondria by anthelmintic drug atovaquone sensitizes renal cell carcinoma to chemotherapy and immunotherapy. J Biochem Mol Toxicol. 2018;32:e22195.
[Article](https://doi.org/10.1002%2Fjbt.22195)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30004155)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20mitochondria%20by%20anthelmintic%20drug%20atovaquone%20sensitizes%20renal%20cell%20carcinoma%20to%20chemotherapy%20and%20immunotherapy&journal=J%20Biochem%20Mol%20Toxicol&doi=10.1002%2Fjbt.22195&volume=32&publication_year=2018&author=Chen%2CD&author=Sun%2CX&author=Zhang%2CX&author=Cao%2CJ) 
  1. Furst R, Vollmar AM. A new perspective on old drugs: non-mitotic actions of tubulin-binding drugs play a major role in cancer treatment. Pharmazie. 2013;68:478–83.
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DC%2BC3sfnsl2nug%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23923626)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20new%20perspective%20on%20old%20drugs%3A%20non-mitotic%20actions%20of%20tubulin-binding%20drugs%20play%20a%20major%20role%20in%20cancer%20treatment&journal=Pharmazie&volume=68&pages=478-83&publication_year=2013&author=Furst%2CR&author=Vollmar%2CAM) 
  1. Risinger AL, Dybdal-Hargreaves NF, Mooberry SL. Breast cancer cell lines exhibit differential sensitivities to microtubule-targeting drugs independent of doubling time. Anticancer Res. 2015;35:5845–50.
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28Xht1Wjt7fK)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26504006)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4812601)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Breast%20cancer%20cell%20lines%20exhibit%20differential%20sensitivities%20to%20microtubule-targeting%20drugs%20independent%20of%20doubling%20time&journal=Anticancer%20Res&volume=35&pages=5845-50&publication_year=2015&author=Risinger%2CAL&author=Dybdal-Hargreaves%2CNF&author=Mooberry%2CSL) 
  1. Bates DJ, Danilov AV, Lowrey CH, Eastman A. Vinblastine rapidly induces NOXA and acutely sensitizes primary chronic lymphocytic leukemia cells to ABT-737. Mol Cancer Ther. 2013;12:1504–14.
[Article](https://doi.org/10.1158%2F1535-7163.MCT-12-1197)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXht1ChurrK)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23723123)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3742582)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Vinblastine%20rapidly%20induces%20NOXA%20and%20acutely%20sensitizes%20primary%20chronic%20lymphocytic%20leukemia%20cells%20to%20ABT-737&journal=Mol%20Cancer%20Ther&doi=10.1158%2F1535-7163.MCT-12-1197&volume=12&pages=1504-14&publication_year=2013&author=Bates%2CDJ&author=Danilov%2CAV&author=Lowrey%2CCH&author=Eastman%2CA) 
  1. Chu B, Liu F, Li L, Ding C, Chen K, Sun Q, et al. A benzimidazole derivative exhibiting antitumor activity blocks EGFR and HER2 activity and upregulates DR5 in breast cancer cells. Cell Death Dis. 2015;6:e1686.
[Article](https://doi.org/10.1038%2Fcddis.2015.25)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXjvFOhu74%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25766325)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4385914)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20benzimidazole%20derivative%20exhibiting%20antitumor%20activity%20blocks%20EGFR%20and%20HER2%20activity%20and%20upregulates%20DR5%20in%20breast%20cancer%20cells&journal=Cell%20Death%20Dis&doi=10.1038%2Fcddis.2015.25&volume=6&publication_year=2015&author=Chu%2CB&author=Liu%2CF&author=Li%2CL&author=Ding%2CC&author=Chen%2CK&author=Sun%2CQ) 
  1. Haschka MD, Soratroi C, Kirschnek S, Hacker G, Hilbe R, Geley S, et al. The NOXA-MCL1-BIM axis defines lifespan on extended mitotic arrest. Nat Commun. 2015;6:6891.
[Article](https://doi.org/10.1038%2Fncomms7891)  [ADS](http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2015NatCo...6.6891H)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXosFent7w%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25922916)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20NOXA-MCL1-BIM%20axis%20defines%20lifespan%20on%20extended%20mitotic%20arrest&journal=Nat%20Commun&doi=10.1038%2Fncomms7891&volume=6&publication_year=2015&author=Haschka%2CMD&author=Soratroi%2CC&author=Kirschnek%2CS&author=Hacker%2CG&author=Hilbe%2CR&author=Geley%2CS) 
  1. Ghasemi F, Black M, Vizeacoumar F, Pinto N, Ruicci KM, Le C, et al. Repurposing Albendazole: new potential as a chemotherapeutic agent with preferential activity against HPV-negative head and neck squamous cell cancer. Oncotarget. 2017;8:71512–9.
[Article](https://doi.org/10.18632%2Foncotarget.17292)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29069723)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5641066)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Repurposing%20Albendazole%3A%20new%20potential%20as%20a%20chemotherapeutic%20agent%20with%20preferential%20activity%20against%20HPV-negative%20head%20and%20neck%20squamous%20cell%20cancer&journal=Oncotarget.&doi=10.18632%2Foncotarget.17292&volume=8&pages=71512-9&publication_year=2017&author=Ghasemi%2CF&author=Black%2CM&author=Vizeacoumar%2CF&author=Pinto%2CN&author=Ruicci%2CKM&author=Le%2CC) 
  1. Liu H, Sun H, Zhang B, Liu S, Deng S, Weng Z, et al. (18)F-FDG PET imaging for monitoring the early anti-tumor effect of albendazole on triple-negative breast cancer. Breast Cancer. 2020;27:372–80.
[Article](https://link.springer.com/doi/10.1007/s12282-019-01027-5)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31781983)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=18%29F-FDG%20PET%20imaging%20for%20monitoring%20the%20early%20anti-tumor%20effect%20of%20albendazole%20on%20triple-negative%20breast%20cancer&journal=Breast%20Cancer&doi=10.1007%2Fs12282-019-01027-5&volume=27&pages=372-80&publication_year=2020&author=Liu%2CH&author=Sun%2CH&author=Zhang%2CB&author=Liu%2CS&author=Deng%2CS&author=Weng%2CZ) 
  1. Liu S, Liu H, Sun H, Deng S, Yue L, Weng Z, et al. (cRGD)2 peptides modified nanoparticles increase tumor-targeting therapeutic effects by co-delivery of albendazole and iodine-131. Anticancer Drugs. 2022;33:19–29.
[Article](https://doi.org/10.1097%2FCAD.0000000000001135)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXislShtrzM)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=34261920)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=%28cRGD%292%20peptides%20modified%20nanoparticles%20increase%20tumor-targeting%20therapeutic%20effects%20by%20co-delivery%20of%20albendazole%20and%20iodine-131&journal=Anticancer%20Drugs&doi=10.1097%2FCAD.0000000000001135&volume=33&pages=19-29&publication_year=2022&author=Liu%2CS&author=Liu%2CH&author=Sun%2CH&author=Deng%2CS&author=Yue%2CL&author=Weng%2CZ) 
  1. Chen H, Weng Z, Xu C. Albendazole suppresses cell proliferation and migration and induces apoptosis in human pancreatic cancer cells. Anticancer Drugs. 2020;31:431–9.
[Article](https://doi.org/10.1097%2FCAD.0000000000000914)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXmsVOitb4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32044795)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Albendazole%20suppresses%20cell%20proliferation%20and%20migration%20and%20induces%20apoptosis%20in%20human%20pancreatic%20cancer%20cells&journal=Anticancer%20Drugs&doi=10.1097%2FCAD.0000000000000914&volume=31&pages=431-9&publication_year=2020&author=Chen%2CH&author=Weng%2CZ&author=Xu%2CC) 
  1. Sethi G, Shanmugam MK, Arfuso F, Kumar AP. Role of RNF20 in cancer development and progression—a comprehensive review. Biosci Rep. 2018;38.
  1. Wood A, Krogan NJ, Dover J, Schneider J, Heidt J, Boateng MA, et al. Bre1, an E3 ubiquitin ligase required for recruitment and substrate selection of Rad6 at a promoter. Mol Cell. 2003;11:267–74.
[Article](https://doi.org/10.1016%2FS1097-2765%2802%2900802-X)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXhtFags78%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12535539)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Bre1%2C%20an%20E3%20ubiquitin%20ligase%20required%20for%20recruitment%20and%20substrate%20selection%20of%20Rad6%20at%20a%20promoter&journal=Mol%20Cell&doi=10.1016%2FS1097-2765%2802%2900802-X&volume=11&pages=267-74&publication_year=2003&author=Wood%2CA&author=Krogan%2CNJ&author=Dover%2CJ&author=Schneider%2CJ&author=Heidt%2CJ&author=Boateng%2CMA) 
  1. Hwang WW, Venkatasubrahmanyam S, Ianculescu AG, Tong A, Boone C, Madhani HD. A conserved RING finger protein required for histone H2B monoubiquitination and cell size control. Mol Cell. 2003;11:261–6.
[Article](https://doi.org/10.1016%2FS1097-2765%2802%2900826-2)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXhtFags74%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12535538)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20conserved%20RING%20finger%20protein%20required%20for%20histone%20H2B%20monoubiquitination%20and%20cell%20size%20control&journal=Mol%20Cell&doi=10.1016%2FS1097-2765%2802%2900826-2&volume=11&pages=261-6&publication_year=2003&author=Hwang%2CWW&author=Venkatasubrahmanyam%2CS&author=Ianculescu%2CAG&author=Tong%2CA&author=Boone%2CC&author=Madhani%2CHD) 
  1. So CC, Ramachandran S, Martin A. E3 Ubiquitin Ligases RNF20 and RNF40 are required for double-stranded break (DSB) repair: evidence for monoubiquitination of histone H2B Lysine 120 as a novel axis of DSB signaling and repair. Mol Cell Biol. 2019;39.
  1. Moyal L, Lerenthal Y, Gana-Weisz M, Mass G, So S, Wang SY, et al. Requirement of ATM-dependent monoubiquitylation of histone H2B for timely repair of DNA double-strand breaks. Mol Cell. 2011;41:529–42.
[Article](https://doi.org/10.1016%2Fj.molcel.2011.02.015)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXisFKitb8%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21362549)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3397146)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Requirement%20of%20ATM-dependent%20monoubiquitylation%20of%20histone%20H2B%20for%20timely%20repair%20of%20DNA%20double-strand%20breaks&journal=Mol%20Cell&doi=10.1016%2Fj.molcel.2011.02.015&volume=41&pages=529-42&publication_year=2011&author=Moyal%2CL&author=Lerenthal%2CY&author=Gana-Weisz%2CM&author=Mass%2CG&author=So%2CS&author=Wang%2CSY) 
  1. Wegwitz F, Prokakis E, Pejkovska A, Kosinsky RL, Glatzel M, Pantel K, et al. The histone H2B ubiquitin ligase RNF40 is required for HER2-driven mammary tumorigenesis. Cell Death Dis. 2020;11:873.
[Article](https://doi.org/10.1038%2Fs41419-020-03081-w)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXitFynt7jK)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33070155)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568723)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20histone%20H2B%20ubiquitin%20ligase%20RNF40%20is%20required%20for%20HER2-driven%20mammary%20tumorigenesis&journal=Cell%20Death%20Dis&doi=10.1038%2Fs41419-020-03081-w&volume=11&publication_year=2020&author=Wegwitz%2CF&author=Prokakis%2CE&author=Pejkovska%2CA&author=Kosinsky%2CRL&author=Glatzel%2CM&author=Pantel%2CK) 
  1. Chernikova SB, Razorenova OV, Higgins JP, Sishc BJ, Nicolau M, Dorth JA, et al. Deficiency in mammalian histone H2B ubiquitin ligase Bre1 (Rnf20/Rnf40) leads to replication stress and chromosomal instability. Cancer Res. 2012;72:2111–9.
[Article](https://doi.org/10.1158%2F0008-5472.CAN-11-2209)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xls1Wgs78%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22354749)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3328627)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Deficiency%20in%20mammalian%20histone%20H2B%20ubiquitin%20ligase%20Bre1%20%28Rnf20%2FRnf40%29%20leads%20to%20replication%20stress%20and%20chromosomal%20instability&journal=Cancer%20Res&doi=10.1158%2F0008-5472.CAN-11-2209&volume=72&pages=2111-9&publication_year=2012&author=Chernikova%2CSB&author=Razorenova%2COV&author=Higgins%2CJP&author=Sishc%2CBJ&author=Nicolau%2CM&author=Dorth%2CJA) 
  1. Jaaskelainen T, Makkonen H, Visakorpi T, Kim J, Roeder RG, Palvimo JJ. Histone H2B ubiquitin ligases RNF20 and RNF40 in androgen signaling and prostate cancer cell growth. Mol Cell Endocrinol. 2012;350:87–98.
[Article](https://doi.org/10.1016%2Fj.mce.2011.11.025)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhtFajsrw%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22155569)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Histone%20H2B%20ubiquitin%20ligases%20RNF20%20and%20RNF40%20in%20androgen%20signaling%20and%20prostate%20cancer%20cell%20growth&journal=Mol%20Cell%20Endocrinol&doi=10.1016%2Fj.mce.2011.11.025&volume=350&pages=87-98&publication_year=2012&author=Jaaskelainen%2CT&author=Makkonen%2CH&author=Visakorpi%2CT&author=Kim%2CJ&author=Roeder%2CRG&author=Palvimo%2CJJ) 
  1. Wang E, Kawaoka S, Yu M, Shi J, Ni T, Yang W, et al. Histone H2B ubiquitin ligase RNF20 is required for MLL-rearranged leukemia. Proc Natl Acad Sci USA. 2013;110:3901–6.
[Article](https://doi.org/10.1073%2Fpnas.1301045110)  [ADS](http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=2013PNAS..110.3901W)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXltVGgtbo%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23412334)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3593849)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Histone%20H2B%20ubiquitin%20ligase%20RNF20%20is%20required%20for%20MLL-rearranged%20leukemia&journal=Proc%20Natl%20Acad%20Sci%20USA&doi=10.1073%2Fpnas.1301045110&volume=110&pages=3901-6&publication_year=2013&author=Wang%2CE&author=Kawaoka%2CS&author=Yu%2CM&author=Shi%2CJ&author=Ni%2CT&author=Yang%2CW) 
  1. Sawin KE, LeGuellec K, Philippe M, Mitchison TJ. Mitotic spindle organization by a plus-end-directed microtubule motor. Nature. 1992;359:540–3.
[Article](https://doi.org/10.1038%2F359540a0)  [ADS](http://adsabs.harvard.edu/cgi-bin/nph-data_query?link_type=ABSTRACT&bibcode=1992Natur.359..540S)  [CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK3s%2FisV2hsQ%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1406972)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mitotic%20spindle%20organization%20by%20a%20plus-end-directed%20microtubule%20motor&journal=Nature.&doi=10.1038%2F359540a0&volume=359&pages=540-3&publication_year=1992&author=Sawin%2CKE&author=LeGuellec%2CK&author=Philippe%2CM&author=Mitchison%2CTJ) 
  1. She ZY, Zhong N, Yu KW, Xiao Y, Wei YL, Lin Y, et al. Kinesin-5 Eg5 is essential for spindle assembly and chromosome alignment of mouse spermatocytes. Cell Div. 2020;15:6.
[Article](https://link.springer.com/doi/10.1186/s13008-020-00063-4)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXksFCju7c%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32165913)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060529)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Kinesin-5%20Eg5%20is%20essential%20for%20spindle%20assembly%20and%20chromosome%20alignment%20of%20mouse%20spermatocytes&journal=Cell%20Div&doi=10.1186%2Fs13008-020-00063-4&volume=15&publication_year=2020&author=She%2CZY&author=Zhong%2CN&author=Yu%2CKW&author=Xiao%2CY&author=Wei%2CYL&author=Lin%2CY) 
  1. Kapoor TM, Mitchison TJ. Eg5 is static in bipolar spindles relative to tubulin: evidence for a static spindle matrix. J Cell Biol. 2001;154:1125–33.
[Article](https://doi.org/10.1083%2Fjcb.200106011)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXntVGgt7o%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11564753)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2150813)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Eg5%20is%20static%20in%20bipolar%20spindles%20relative%20to%20tubulin%3A%20evidence%20for%20a%20static%20spindle%20matrix&journal=J%20Cell%20Biol&doi=10.1083%2Fjcb.200106011&volume=154&pages=1125-33&publication_year=2001&author=Kapoor%2CTM&author=Mitchison%2CTJ) 
  1. Garcia-Saez I, Skoufias DA. Eg5 targeting agents: From new anti-mitotic based inhibitor discovery to cancer therapy and resistance. Biochem Pharm. 2021;184:114364.
[Article](https://doi.org/10.1016%2Fj.bcp.2020.114364)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXktlSgtw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33310050)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Eg5%20targeting%20agents%3A%20From%20new%20anti-mitotic%20based%20inhibitor%20discovery%20to%20cancer%20therapy%20and%20resistance&journal=Biochem%20Pharm&doi=10.1016%2Fj.bcp.2020.114364&volume=184&publication_year=2021&author=Garcia-Saez%2CI&author=Skoufias%2CDA) 
  1. Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ. Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol. 2000;150:975–88.
[Article](https://doi.org/10.1083%2Fjcb.150.5.975)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXmtlegt70%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10973989)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2175262)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Probing%20spindle%20assembly%20mechanisms%20with%20monastrol%2C%20a%20small%20molecule%20inhibitor%20of%20the%20mitotic%20kinesin%2C%20Eg5&journal=J%20Cell%20Biol&doi=10.1083%2Fjcb.150.5.975&volume=150&pages=975-88&publication_year=2000&author=Kapoor%2CTM&author=Mayer%2CTU&author=Coughlin%2CML&author=Mitchison%2CTJ) 
  1. Yang L, Jiang C, Liu F, You QD, Wu WT. Cloning, enzyme characterization of recombinant human Eg5 and the development of a new inhibitor. Biol Pharm Bull. 2008;31:1397–402.
[Article](https://doi.org/10.1248%2Fbpb.31.1397)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXhtFKms7zP)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18591782)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cloning%2C%20enzyme%20characterization%20of%20recombinant%20human%20Eg5%20and%20the%20development%20of%20a%20new%20inhibitor&journal=Biol%20Pharm%20Bull&doi=10.1248%2Fbpb.31.1397&volume=31&pages=1397-402&publication_year=2008&author=Yang%2CL&author=Jiang%2CC&author=Liu%2CF&author=You%2CQD&author=Wu%2CWT) 
  1. Nakai R, Iida S, Takahashi T, Tsujita T, Okamoto S, Takada C, et al. K858, a novel inhibitor of mitotic kinesin Eg5 and antitumor agent, induces cell death in cancer cells. Cancer Res. 2009;69:3901–9.
[Article](https://doi.org/10.1158%2F0008-5472.CAN-08-4373)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXltFOksLY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19351824)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=K858%2C%20a%20novel%20inhibitor%20of%20mitotic%20kinesin%20Eg5%20and%20antitumor%20agent%2C%20induces%20cell%20death%20in%20cancer%20cells&journal=Cancer%20Res&doi=10.1158%2F0008-5472.CAN-08-4373&volume=69&pages=3901-9&publication_year=2009&author=Nakai%2CR&author=Iida%2CS&author=Takahashi%2CT&author=Tsujita%2CT&author=Okamoto%2CS&author=Takada%2CC) 
  1. Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das B, et al. Combination therapy in combating cancer. Oncotarget. 2017;8:38022–43.
[Article](https://doi.org/10.18632%2Foncotarget.16723)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28410237)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Combination%20therapy%20in%20combating%20cancer&journal=Oncotarget.&doi=10.18632%2Foncotarget.16723&volume=8&pages=38022-43&publication_year=2017&author=Bayat%20Mokhtari%2CR&author=Homayouni%2CTS&author=Baluch%2CN&author=Morgatskaya%2CE&author=Kumar%2CS&author=Das%2CB)
Resumir
这篇文章总结了全球癌症统计数据和相关研究,涵盖了2020年全球185个国家36种癌症的发病率和死亡率。研究指出,癌症的治疗和生存率在不断变化,特别是在精准医学的背景下,结直肠癌的临床管理也在不断进步。文章提到了一些新型药物和治疗策略,包括针对claudin-1的抑制剂以及panitumumab的维持治疗。此外,文中还讨论了结肠癌的耐药机制及其治疗策略,强调了针对性治疗的重要性。整体来看,癌症的研究和治疗正朝着更加个性化和精准化的方向发展,未来的研究将继续关注癌症的早期诊断和有效治疗。