Skin chronological aging drives age-related bone loss via secretion of cystatin-A

contenido
  1. Manolagas, S. C. & Jilka, R. L. Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. N. Engl. J. Med. 332, 305–311 (1995).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK2M7hsFOiuw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7816067)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Bone%20marrow%2C%20cytokines%2C%20and%20bone%20remodeling.%20Emerging%20insights%20into%20the%20pathophysiology%20of%20osteoporosis&journal=N.%20Engl.%20J.%20Med.&volume=332&pages=305-311&publication_year=1995&author=Manolagas%2CSC&author=Jilka%2CRL) 
  1. Kawaguchi, H. et al. Independent impairment of osteoblast and osteoclast differentiation in klotho mouse exhibiting low-turnover osteopenia. J. Clin. Invest. 104, 229–237 (1999).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1MXkvFagsbg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10430604)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC408412)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Independent%20impairment%20of%20osteoblast%20and%20osteoclast%20differentiation%20in%20klotho%20mouse%20exhibiting%20low-turnover%20osteopenia&journal=J.%20Clin.%20Invest.&volume=104&pages=229-237&publication_year=1999&author=Kawaguchi%2CH) 
  1. Russell-Goldman, E. & Murphy, G. F. The pathobiology of skin aging: new insights into an old dilemma. Am. J. Pathol. 190, 1356–1369 (2020).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32246919)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7481755)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20pathobiology%20of%20skin%20aging%3A%20new%20insights%20into%20an%20old%20dilemma&journal=Am.%20J.%20Pathol.&volume=190&pages=1356-1369&publication_year=2020&author=Russell-Goldman%2CE&author=Murphy%2CGF) 
  1. McConkey, B., Fraser, G. M., Bligh, A. S. & Whiteley, H. Transparent skin and osteoporosis. Lancet 281, 693–695 (1963).
[Google Scholar](http://scholar.google.com/scholar_lookup?&title=Transparent%20skin%20and%20osteoporosis&journal=Lancet&volume=281&pages=693-695&publication_year=1963&author=McConkey%2CB&author=Fraser%2CGM&author=Bligh%2CAS&author=Whiteley%2CH) 
  1. Black, M. M., Shuster, S. & Bottoms, E. Osteoporosis, skin collagen, and androgen. Br. Med. J. 4, 773–774 (1970).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaE3M7jt1ygtQ%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=5503232)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1820376)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Osteoporosis%2C%20skin%20collagen%2C%20and%20androgen&journal=Br.%20Med.%20J.&volume=4&pages=773-774&publication_year=1970&author=Black%2CMM&author=Shuster%2CS&author=Bottoms%2CE) 
  1. Chappard, D., Alexandre, C., Robert, J. M. & Riffat, G. Relationships between bone and skin atrophies during aging. Acta Anat. (Basel) 141, 239–244 (1991).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK38%2FpsFSmtg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1755285)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Relationships%20between%20bone%20and%20skin%20atrophies%20during%20aging&journal=Acta%20Anat.%20%28Basel%29&volume=141&pages=239-244&publication_year=1991&author=Chappard%2CD&author=Alexandre%2CC&author=Robert%2CJM&author=Riffat%2CG) 
  1. Whitmore, S. E. & Levine, M. A. Risk factors for reduced skin thickness and bone density: possible clues regarding pathophysiology, prevention, and treatment. J. Am. Acad. Dermatol. 38, 248–255 (1998).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK1c7ks1SrtQ%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9486682)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Risk%20factors%20for%20reduced%20skin%20thickness%20and%20bone%20density%3A%20possible%20clues%20regarding%20pathophysiology%2C%20prevention%2C%20and%20treatment&journal=J.%20Am.%20Acad.%20Dermatol.&volume=38&pages=248-255&publication_year=1998&author=Whitmore%2CSE&author=Levine%2CMA) 
  1. Villeneuve, D., Lidove, O., Chazerain, P., Ziza, J. M. & Sené, T. Association between dermatoporosis and history of major osteoporotic fractures: a French prospective observational study in a general practice population. Joint Bone Spine 87, 511–512 (2020).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32360829)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Association%20between%20dermatoporosis%20and%20history%20of%20major%20osteoporotic%20fractures%3A%20a%20French%20prospective%20observational%20study%20in%20a%20general%20practice%20population&journal=Joint%20Bone%20Spine&volume=87&pages=511-512&publication_year=2020&author=Villeneuve%2CD&author=Lidove%2CO&author=Chazerain%2CP&author=Ziza%2CJM&author=Sen%C3%A9%2CT) 
  1. Shuster, S. Osteoporosis, like skin ageing, is caused by collagen loss which is reversible. J. R. Soc. Med. 113, 158–160 (2020).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32286123)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7160787)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Osteoporosis%2C%20like%20skin%20ageing%2C%20is%20caused%20by%20collagen%20loss%20which%20is%20reversible&journal=J.%20R.%20Soc.%20Med.&volume=113&pages=158-160&publication_year=2020&author=Shuster%2CS) 
  1. Sirufo, M. M., De Pietro, F., Bassino, E. M., Ginaldi, L. & De Martinis, M. Osteoporosis in skin diseases. Int. J. Mol. Sci. 21, 4749 (2020).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhvF2gsL7N)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32635380)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7370296)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Osteoporosis%20in%20skin%20diseases&journal=Int.%20J.%20Mol.%20Sci.&volume=21&publication_year=2020&author=Sirufo%2CMM&author=Pietro%2CF&author=Bassino%2CEM&author=Ginaldi%2CL&author=Martinis%2CM) 
  1. Dayoub, J. C., Cortese, F., Anžič, A., Grum, T. & de Magalhães, J. P. The effects of donor age on organ transplants: a review and implications for aging research. Exp. Gerontol. 110, 230–240 (2018).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29935294)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6123500)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20effects%20of%20donor%20age%20on%20organ%20transplants%3A%20a%20review%20and%20implications%20for%20aging%20research&journal=Exp.%20Gerontol.&volume=110&pages=230-240&publication_year=2018&author=Dayoub%2CJC&author=Cortese%2CF&author=An%C5%BEi%C4%8D%2CA&author=Grum%2CT&author=Magalh%C3%A3es%2CJP) 
  1. Nelson, G. et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11, 345–349 (2012).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XltFSisbc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22321662)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20senescent%20cell%20bystander%20effect%3A%20senescence-induced%20senescence&journal=Aging%20Cell&volume=11&pages=345-349&publication_year=2012&author=Nelson%2CG) 
  1. Acosta, J. C. et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15, 978–990 (2013).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXpsV2jt74%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23770676)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3732483)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20complex%20secretory%20program%20orchestrated%20by%20the%20inflammasome%20controls%20paracrine%20senescence&journal=Nat.%20Cell%20Biol.&volume=15&pages=978-990&publication_year=2013&author=Acosta%2CJC) 
  1. Yousefzadeh, M. J. et al. An aged immune system drives senescence and ageing of solid organs. Nature 594, 100–105 (2021).
  1. Giangreco, A., Goldie, S. J., Failla, V., Saintigny, G. & Watt, F. M. Human skin aging is associated with reduced expression of the stem cell markers beta1 integrin and MCSP. J. Invest. Dermatol. 130, 604–608 (2010).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXntVahtA%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19776755)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Human%20skin%20aging%20is%20associated%20with%20reduced%20expression%20of%20the%20stem%20cell%20markers%20beta1%20integrin%20and%20MCSP&journal=J.%20Invest.%20Dermatol.&volume=130&pages=604-608&publication_year=2010&author=Giangreco%2CA&author=Goldie%2CSJ&author=Failla%2CV&author=Saintigny%2CG&author=Watt%2CFM) 
  1. Umbayev, B. et al. Galactose-induced skin aging: the role of oxidative stress. Oxid. Med. Cell. Longev. 2020, 7145656 (2020).
  1. Riggs, B. L. & Melton, L. J. 3rd Involutional osteoporosis. N. Engl. J. Med. 314, 1676–1686 (1986).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaL283jtVOntw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3520321)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Involutional%20osteoporosis&journal=N.%20Engl.%20J.%20Med.&volume=314&pages=1676-1686&publication_year=1986&author=Riggs%2CBL&author=Melton%2CLJ) 
  1. Hu, L. et al. Epidermal dysfunction leads to an age-associated increase in levels of serum inflammatory cytokines. J. Invest. Dermatol. 137, 1277–1285 (2017).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXkt1Oht7Y%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28115059)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5441930)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Epidermal%20dysfunction%20leads%20to%20an%20age-associated%20increase%20in%20levels%20of%20serum%20inflammatory%20cytokines&journal=J.%20Invest.%20Dermatol.&volume=137&pages=1277-1285&publication_year=2017&author=Hu%2CL) 
  1. Moschen, A. R. et al. The RANKL/OPG system is activated in inflammatory bowel disease and relates to the state of bone loss. Gut 54, 479–487 (2005).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXjtFamsrs%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15753532)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774465)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20RANKL%2FOPG%20system%20is%20activated%20in%20inflammatory%20bowel%20disease%20and%20relates%20to%20the%20state%20of%20bone%20loss&journal=Gut&volume=54&pages=479-487&publication_year=2005&author=Moschen%2CAR) 
  1. Redlich, K. & Smolen, J. S. Inflammatory bone loss: pathogenesis and therapeutic intervention. Nat. Rev. Drug Discov. 11, 234–250 (2012).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XivFygsLw%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22378270)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inflammatory%20bone%20loss%3A%20pathogenesis%20and%20therapeutic%20intervention&journal=Nat.%20Rev.%20Drug%20Discov.&volume=11&pages=234-250&publication_year=2012&author=Redlich%2CK&author=Smolen%2CJS) 
  1. Kato, T., Takai, T., Mitsuishi, K., Okumura, K. & Ogawa, H. Cystatin A inhibits IL-8 production by keratinocytes stimulated with Der p 1 and Der f 1: biochemical skin barrier against mite cysteine proteases. J. Allergy Clin. Immunol. 116, 169–176 (2005).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXlvVWns78%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15990791)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cystatin%20A%20inhibits%20IL-8%20production%20by%20keratinocytes%20stimulated%20with%20Der%20p%201%20and%20Der%20f%201%3A%20biochemical%20skin%20barrier%20against%20mite%20cysteine%20proteases&journal=J.%20Allergy%20Clin.%20Immunol.&volume=116&pages=169-176&publication_year=2005&author=Kato%2CT&author=Takai%2CT&author=Mitsuishi%2CK&author=Okumura%2CK&author=Ogawa%2CH) 
  1. Hall, G. & Phillips, T. J. Estrogen and skin: the effects of estrogen, menopause, and hormone replacement therapy on the skin. J. Am. Acad. Dermatol. 53, 555–568 (2005).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16198774)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Estrogen%20and%20skin%3A%20the%20effects%20of%20estrogen%2C%20menopause%2C%20and%20hormone%20replacement%20therapy%20on%20the%20skin&journal=J.%20Am.%20Acad.%20Dermatol.&volume=53&pages=555-568&publication_year=2005&author=Hall%2CG&author=Phillips%2CTJ) 
  1. Sallach, J. et al. Tropism-modified AAV vectors overcome barriers to successful cutaneous therapy. Mol. Ther. 22, 929–939 (2014).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXjtVKiu7w%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24468915)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015237)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Tropism-modified%20AAV%20vectors%20overcome%20barriers%20to%20successful%20cutaneous%20therapy&journal=Mol.%20Ther.&volume=22&pages=929-939&publication_year=2014&author=Sallach%2CJ) 
  1. Tohmonda, T. et al. IRE1α/XBP1-mediated branch of the unfolded protein response regulates osteoclastogenesis. J. Clin. Invest. 125, 3269–3279 (2015).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26193638)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4563737)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=IRE1%CE%B1%2FXBP1-mediated%20branch%20of%20the%20unfolded%20protein%20response%20regulates%20osteoclastogenesis&journal=J.%20Clin.%20Invest.&volume=125&pages=3269-3279&publication_year=2015&author=Tohmonda%2CT) 
  1. Steven, A. C. & Steinert, P. M. Protein composition of cornified cell envelopes of epidermal keratinocytes. J. Cell Sci. 107, 693–700 (1994).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2cXjtF2qsr4%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8207091)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Protein%20composition%20of%20cornified%20cell%20envelopes%20of%20epidermal%20keratinocytes&journal=J.%20Cell%20Sci.&volume=107&pages=693-700&publication_year=1994&author=Steven%2CAC&author=Steinert%2CPM) 
  1. Blaydon, D. C. et al. Mutations in CSTA, encoding Cystatin A, underlie exfoliative ichthyosis and reveal a role for this protease inhibitor in cell-cell adhesion. Am. J. Hum. Genet. 89, 564–571 (2011).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXht12rsL3P)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21944047)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3188842)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mutations%20in%20CSTA%2C%20encoding%20Cystatin%20A%2C%20underlie%20exfoliative%20ichthyosis%20and%20reveal%20a%20role%20for%20this%20protease%20inhibitor%20in%20cell-cell%20adhesion&journal=Am.%20J.%20Hum.%20Genet.&volume=89&pages=564-571&publication_year=2011&author=Blaydon%2CDC) 
  1. Walters, M. R. Newly identified actions of the vitamin D endocrine system. Endocr. Rev. 13, 719–764 (1992).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK3sXhtl2qsbg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1333949)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Newly%20identified%20actions%20of%20the%20vitamin%20D%20endocrine%20system&journal=Endocr.%20Rev.&volume=13&pages=719-764&publication_year=1992&author=Walters%2CMR) 
  1. Hosomi, J., Hosoi, J., Abe, E., Suda, T. & Kuroki, T. Regulation of terminal differentiation of cultured mouse epidermal cells by 1 alpha,25-dihydroxyvitamin D3. Endocrinology 113, 1950–1957 (1983).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaL2cXitFyktQ%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6196178)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20terminal%20differentiation%20of%20cultured%20mouse%20epidermal%20cells%20by%201%20alpha%2C25-dihydroxyvitamin%20D3&journal=Endocrinology&volume=113&pages=1950-1957&publication_year=1983&author=Hosomi%2CJ&author=Hosoi%2CJ&author=Abe%2CE&author=Suda%2CT&author=Kuroki%2CT) 
  1. Smith, E. L., Walworth, N. C. & Holick, M. F. Effect of 1 alpha,25-dihydroxyvitamin D3 on the morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown in serum-free conditions. J. Invest. Dermatol. 86, 709–714 (1986).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaL28XktF2nsrk%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2423618)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effect%20of%201%20alpha%2C25-dihydroxyvitamin%20D3%20on%20the%20morphologic%20and%20biochemical%20differentiation%20of%20cultured%20human%20epidermal%20keratinocytes%20grown%20in%20serum-free%20conditions&journal=J.%20Invest.%20Dermatol.&volume=86&pages=709-714&publication_year=1986&author=Smith%2CEL&author=Walworth%2CNC&author=Holick%2CMF) 
  1. Takahashi, H. et al. 1, 25-Dihydroxyvitamin D 3 increases human cystatin A expression by inhibiting the Raf-1/MEK1/ERK signaling pathway of keratinocytes. Arch. Dermatol. Res. 295, 80–87 (2003).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXmsV2ltL8%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12682854)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=1%2C%2025-Dihydroxyvitamin%20D%203%20increases%20human%20cystatin%20A%20expression%20by%20inhibiting%20the%20Raf-1%2FMEK1%2FERK%20signaling%20pathway%20of%20keratinocytes&journal=Arch.%20Dermatol.%20Res.&volume=295&pages=80-87&publication_year=2003&author=Takahashi%2CH) 
  1. Cunningham, T. J. et al. Randomized trial of calcipotriol combined with 5-fluorouracil for skin cancer precursor immunotherapy. J. Clin. Invest. 127, 106–116 (2017).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27869649)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Randomized%20trial%20of%20calcipotriol%20combined%20with%205-fluorouracil%20for%20skin%20cancer%20precursor%20immunotherapy&journal=J.%20Clin.%20Invest.&volume=127&pages=106-116&publication_year=2017&author=Cunningham%2CTJ) 
  1. Kragballe, K. & Iversen, L. Calcipotriol. A new topical antipsoriatic. Dermatol. Clin. 11, 137–141 (1993).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK3s7mvFyjtg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8435908)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Calcipotriol.%20A%20new%20topical%20antipsoriatic&journal=Dermatol.%20Clin.&volume=11&pages=137-141&publication_year=1993&author=Kragballe%2CK&author=Iversen%2CL) 
  1. Li, M. et al. Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc. Natl Acad. Sci. USA 103, 11736–11741 (2006).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XotFagtrs%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16880407)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1544239)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Topical%20vitamin%20D3%20and%20low-calcemic%20analogs%20induce%20thymic%20stromal%20lymphopoietin%20in%20mouse%20keratinocytes%20and%20trigger%20an%20atopic%20dermatitis&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&volume=103&pages=11736-11741&publication_year=2006&author=Li%2CM) 
  1. Chandler, P. D. et al. Reduction of parathyroid hormone with vitamin D supplementation in blacks: a randomized controlled trial. BMC Nutr. 1, 26 (2015).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26858840)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Reduction%20of%20parathyroid%20hormone%20with%20vitamin%20D%20supplementation%20in%20blacks%3A%20a%20randomized%20controlled%20trial&journal=BMC%20Nutr.&volume=1&publication_year=2015&author=Chandler%2CPD) 
  1. Bianco, P. et al. The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat. Med. 19, 35–42 (2013).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXjslegtA%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23296015)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998103)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20meaning%2C%20the%20sense%20and%20the%20significance%3A%20translating%20the%20science%20of%20mesenchymal%20stem%20cells%20into%20medicine&journal=Nat.%20Med.&volume=19&pages=35-42&publication_year=2013&author=Bianco%2CP) 
  1. Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXjs1ynu7g%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12748652)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Osteoclast%20differentiation%20and%20activation&journal=Nature&volume=423&pages=337-342&publication_year=2003&author=Boyle%2CWJ&author=Simonet%2CWS&author=Lacey%2CDL) 
  1. Teitelbaum, S. L. Bone resorption by osteoclasts. Science 289, 1504–1508 (2000).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXmt1KgsLk%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10968780)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Bone%20resorption%20by%20osteoclasts&journal=Science&volume=289&pages=1504-1508&publication_year=2000&author=Teitelbaum%2CSL) 
  1. Adams, D. R., Ron, D. & Kiely, P. A. RACK1, a multifaceted scaffolding protein: structure and function. Cell Commun. Signal. 9, 22 (2011).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3MXhs1SmtrjN)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21978545)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195729)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=RACK1%2C%20a%20multifaceted%20scaffolding%20protein%3A%20structure%20and%20function&journal=Cell%20Commun.%20Signal.&volume=9&publication_year=2011&author=Adams%2CDR&author=Ron%2CD&author=Kiely%2CPA) 
  1. Mamidipudi, V. et al. RACK1 inhibits colonic cell growth by regulating Src activity at cell cycle checkpoints. Oncogene 26, 2914–2924 (2007).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXkvVansLY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17072338)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=RACK1%20inhibits%20colonic%20cell%20growth%20by%20regulating%20Src%20activity%20at%20cell%20cycle%20checkpoints&journal=Oncogene&volume=26&pages=2914-2924&publication_year=2007&author=Mamidipudi%2CV) 
  1. Lin, J., Lee, D., Choi, Y. & Lee, S. Y. The scaffold protein RACK1 mediates the RANKL-dependent activation of p38 MAPK in osteoclast precursors. Sci. Signal. 8, ra54 (2015).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26038599)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4492518)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20scaffold%20protein%20RACK1%20mediates%20the%20RANKL-dependent%20activation%20of%20p38%20MAPK%20in%20osteoclast%20precursors&journal=Sci.%20Signal.&volume=8&publication_year=2015&author=Lin%2CJ&author=Lee%2CD&author=Choi%2CY&author=Lee%2CSY) 
  1. Park, J. H. et al. RACK1 interaction with c-Src is essential for osteoclast function. Exp. Mol. Med. 51, 86 (2019).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31358728)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6802652)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=RACK1%20interaction%20with%20c-Src%20is%20essential%20for%20osteoclast%20function&journal=Exp.%20Mol.%20Med.&volume=51&publication_year=2019&author=Park%2CJH) 
  1. Chang, B. Y., Chiang, M. & Cartwright, C. A. The interaction of Src and RACK1 is enhanced by activation of protein kinase C and tyrosine phosphorylation of RACK1. J. Biol. Chem. 276, 20346–20356 (2001).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXktlKnt7w%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11279199)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20interaction%20of%20Src%20and%20RACK1%20is%20enhanced%20by%20activation%20of%20protein%20kinase%20C%20and%20tyrosine%20phosphorylation%20of%20RACK1&journal=J.%20Biol.%20Chem.&volume=276&pages=20346-20356&publication_year=2001&author=Chang%2CBY&author=Chiang%2CM&author=Cartwright%2CCA) 
  1. Chang, B. Y., Harte, R. A. & Cartwright, C. A. RACK1: a novel substrate for the Src protein-tyrosine kinase. Oncogene 21, 7619–7629 (2002).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD38XotFWrtLc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12400005)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=RACK1%3A%20a%20novel%20substrate%20for%20the%20Src%20protein-tyrosine%20kinase&journal=Oncogene&volume=21&pages=7619-7629&publication_year=2002&author=Chang%2CBY&author=Harte%2CRA&author=Cartwright%2CCA) 
  1. Tong, L. et al. Crystal structures of the human p56lck SH2 domain in complex with two short phosphotyrosyl peptides at 1.0 A and 1.8 A resolution. J. Mol. Biol. 256, 601–610 (1996).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK28XhtlGiu7c%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8604142)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Crystal%20structures%20of%20the%20human%20p56lck%20SH2%20domain%20in%20complex%20with%20two%20short%20phosphotyrosyl%20peptides%20at%201.0%20A%20and%201.8%20A%20resolution&journal=J.%20Mol.%20Biol.&volume=256&pages=601-610&publication_year=1996&author=Tong%2CL) 
  1. Lause, M., Kamboj, A. & Fernandez Faith, E. Dermatologic manifestations of endocrine disorders. Transl. Pediatr. 6, 300–312 (2017).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29184811)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5682371)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Dermatologic%20manifestations%20of%20endocrine%20disorders&journal=Transl.%20Pediatr.&volume=6&pages=300-312&publication_year=2017&author=Lause%2CM&author=Kamboj%2CA&author=Fernandez%20Faith%2CE) 
  1. Robinson, R. J., Al-Azzawi, F., Iqbal, J. S., Abrams, K. & Mayberry, J. F. The relation of hand skin-fold thickness to bone mineral density in patients with Crohn’s disease. Eur. J. Gastroenterol. Hepatol. 9, 945–949 (1997).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK1c%2Fltlaksg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9391782)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20relation%20of%20hand%20skin-fold%20thickness%20to%20bone%20mineral%20density%20in%20patients%20with%20Crohn%E2%80%99s%20disease&journal=Eur.%20J.%20Gastroenterol.%20Hepatol.&volume=9&pages=945-949&publication_year=1997&author=Robinson%2CRJ&author=Al-Azzawi%2CF&author=Iqbal%2CJS&author=Abrams%2CK&author=Mayberry%2CJF) 
  1. Savvas, M. et al. The effect of anorexia nervosa on skin thickness, skin collagen and bone density. Br. J. Obstet. Gynaecol. 96, 1392–1394 (1989).
[CAS](https://www.nature.com/articles/cas-redirect/1:STN:280:DyaK3c7kvV2jtw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=2620050)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20effect%20of%20anorexia%20nervosa%20on%20skin%20thickness%2C%20skin%20collagen%20and%20bone%20density&journal=Br.%20J.%20Obstet.%20Gynaecol.&volume=96&pages=1392-1394&publication_year=1989&author=Savvas%2CM) 
  1. Van Dijk, F. S. & Sillence, D. O. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am. J. Med. Genet. A 164, 1470–1481 (2014).
[PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4314691)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Osteogenesis%20imperfecta%3A%20clinical%20diagnosis%2C%20nomenclature%20and%20severity%20assessment&journal=Am.%20J.%20Med.%20Genet.%20A&volume=164&pages=1470-1481&publication_year=2014&author=Dijk%2CFS&author=Sillence%2CDO) 
  1. Stevenson, S. & Thornton, J. Effect of estrogens on skin aging and the potential role of SERMs. Clin. Interv. Aging 2, 283–297 (2007).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtlOltbrI)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18044179)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685269)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Effect%20of%20estrogens%20on%20skin%20aging%20and%20the%20potential%20role%20of%20SERMs&journal=Clin.%20Interv.%20Aging&volume=2&pages=283-297&publication_year=2007&author=Stevenson%2CS&author=Thornton%2CJ) 
  1. Denu, R. A. et al. Fibroblasts and mesenchymal stromal/stem cells are phenotypically indistinguishable. Acta Haematol. 136, 85–97 (2016).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhtlKrsLbP)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27188909)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Fibroblasts%20and%20mesenchymal%20stromal%2Fstem%20cells%20are%20phenotypically%20indistinguishable&journal=Acta%20Haematol.&volume=136&pages=85-97&publication_year=2016&author=Denu%2CRA) 
  1. Gil, A., Plaza-Diaz, J. & Mesa, M. D. Vitamin D: classic and novel actions. Ann. Nutr. Metab. 72, 87–95 (2018).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXlt1Kqt7g%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29346788)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Vitamin%20D%3A%20classic%20and%20novel%20actions&journal=Ann.%20Nutr.%20Metab.&volume=72&pages=87-95&publication_year=2018&author=Gil%2CA&author=Plaza-Diaz%2CJ&author=Mesa%2CMD) 
  1. Zenz, R. et al. Psoriasis-like skin disease and arthritis caused by inducible epidermal deletion of Jun proteins. Nature 437, 369–375 (2005).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXpvFOrt7k%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16163348)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Psoriasis-like%20skin%20disease%20and%20arthritis%20caused%20by%20inducible%20epidermal%20deletion%20of%20Jun%20proteins&journal=Nature&volume=437&pages=369-375&publication_year=2005&author=Zenz%2CR) 
  1. Vasilopoulos, Y. et al. A nonsynonymous substitution of cystatin A, a cysteine protease inhibitor of house dust mite protease, leads to decreased mRNA stability and shows a significant association with atopic dermatitis. Allergy 62, 514–519 (2007).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtFyjur%2FE)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17441792)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20nonsynonymous%20substitution%20of%20cystatin%20A%2C%20a%20cysteine%20protease%20inhibitor%20of%20house%20dust%20mite%20protease%2C%20leads%20to%20decreased%20mRNA%20stability%20and%20shows%20a%20significant%20association%20with%20atopic%20dermatitis&journal=Allergy&volume=62&pages=514-519&publication_year=2007&author=Vasilopoulos%2CY) 
  1. Krunic, A. L., Stone, K. L., Simpson, M. A. & McGrath, J. A. Acral peeling skin syndrome resulting from a homozygous nonsense mutation in the CSTA gene encoding cystatin A. Pediatr. Dermatol. 30, e87–e88 (2013).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23534700)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Acral%20peeling%20skin%20syndrome%20resulting%20from%20a%20homozygous%20nonsense%20mutation%20in%20the%20CSTA%20gene%20encoding%20cystatin%20A&journal=Pediatr.%20Dermatol.&volume=30&pages=e87-e88&publication_year=2013&author=Krunic%2CAL&author=Stone%2CKL&author=Simpson%2CMA&author=McGrath%2CJA) 
  1. Moosbrugger-Martinz, V. et al. Epidermal barrier abnormalities in exfoliative ichthyosis with a novel homozygous loss-of-function mutation in CSTA. Br. J. Dermatol. 172, 1628–1632 (2015).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXps12nsrg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25400170)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Epidermal%20barrier%20abnormalities%20in%20exfoliative%20ichthyosis%20with%20a%20novel%20homozygous%20loss-of-function%20mutation%20in%20CSTA&journal=Br.%20J.%20Dermatol.&volume=172&pages=1628-1632&publication_year=2015&author=Moosbrugger-Martinz%2CV) 
  1. Vasilopoulos, Y. et al. Association analysis of the skin barrier gene cystatin A at the PSORS5 locus in psoriatic patients: evidence for interaction between PSORS1 and PSORS5. Eur. J. Hum. Genet. 16, 1002–1009 (2008).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXovV2nur0%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18364739)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Association%20analysis%20of%20the%20skin%20barrier%20gene%20cystatin%20A%20at%20the%20PSORS5%20locus%20in%20psoriatic%20patients%3A%20evidence%20for%20interaction%20between%20PSORS1%20and%20PSORS5&journal=Eur.%20J.%20Hum.%20Genet.&volume=16&pages=1002-1009&publication_year=2008&author=Vasilopoulos%2CY) 
  1. Ritchlin, C. T., Haas-Smith, S. A., Li, P., Hicks, D. G. & Schwarz, E. M. Mechanisms of TNF-alpha- and RANKL-mediated osteoclastogenesis and bone resorption in psoriatic arthritis. J. Clin. Invest. 111, 821–831 (2003).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXitlOjsbc%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12639988)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC153764)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mechanisms%20of%20TNF-alpha-%20and%20RANKL-mediated%20osteoclastogenesis%20and%20bone%20resorption%20in%20psoriatic%20arthritis&journal=J.%20Clin.%20Invest.&volume=111&pages=821-831&publication_year=2003&author=Ritchlin%2CCT&author=Haas-Smith%2CSA&author=Li%2CP&author=Hicks%2CDG&author=Schwarz%2CEM) 
  1. Ekström, U. et al. Internalization of cystatin C in human cell lines. FEBS J. 275, 4571–4582 (2008).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18699780)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7163943)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Internalization%20of%20cystatin%20C%20in%20human%20cell%20lines&journal=FEBS%20J.&volume=275&pages=4571-4582&publication_year=2008&author=Ekstr%C3%B6m%2CU) 
  1. Di Giaimo, R. et al. New insights into the molecular basis of progressive myoclonus epilepsy: a multiprotein complex with cystatin B. Hum. Mol. Genet. 11, 2941–2950 (2002).
[PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12393805)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=New%20insights%20into%20the%20molecular%20basis%20of%20progressive%20myoclonus%20epilepsy%3A%20a%20multiprotein%20complex%20with%20cystatin%20B&journal=Hum.%20Mol.%20Genet.&volume=11&pages=2941-2950&publication_year=2002&author=Giaimo%2CR) 
  1. Horne, W. C., Sanjay, A., Bruzzaniti, A. & Baron, R. The role(s) of Src kinase and Cbl proteins in the regulation of osteoclast differentiation and function. Immunol. Rev. 208, 106–125 (2005).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28Xks1eitg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16313344)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20role%28s%29%20of%20Src%20kinase%20and%20Cbl%20proteins%20in%20the%20regulation%20of%20osteoclast%20differentiation%20and%20function&journal=Immunol.%20Rev.&volume=208&pages=106-125&publication_year=2005&author=Horne%2CWC&author=Sanjay%2CA&author=Bruzzaniti%2CA&author=Baron%2CR) 
  1. Zaidi, S. K. et al. Tyrosine phosphorylation controls Runx2-mediated subnuclear targeting of YAP to repress transcription. EMBO J. 23, 790–799 (2004).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXhsFCjt7w%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14765127)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC380991)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Tyrosine%20phosphorylation%20controls%20Runx2-mediated%20subnuclear%20targeting%20of%20YAP%20to%20repress%20transcription&journal=EMBO%20J.&volume=23&pages=790-799&publication_year=2004&author=Zaidi%2CSK) 
  1. Nakashima, K. et al. The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108, 17–29 (2002).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD38XosF2hsg%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11792318)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20novel%20zinc%20finger-containing%20transcription%20factor%20osterix%20is%20required%20for%20osteoblast%20differentiation%20and%20bone%20formation&journal=Cell&volume=108&pages=17-29&publication_year=2002&author=Nakashima%2CK) 
  1. Choi, Y. H. et al. Src enhances osteogenic differentiation through phosphorylation of Osterix. Mol. Cell. Endocrinol. 407, 85–97 (2015).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXlsVSrsb0%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25802190)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Src%20enhances%20osteogenic%20differentiation%20through%20phosphorylation%20of%20Osterix&journal=Mol.%20Cell.%20Endocrinol.&volume=407&pages=85-97&publication_year=2015&author=Choi%2CYH) 
  1. Muzumdar, M. D., Tasic, B., Miyamichi, K., Li, L. & Luo, L. A global double-fluorescent Cre reporter mouse. Genesis 45, 593–605 (2007).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2sXhtlWjs7nK)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17868096)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20global%20double-fluorescent%20Cre%20reporter%20mouse&journal=Genesis&volume=45&pages=593-605&publication_year=2007&author=Muzumdar%2CMD&author=Tasic%2CB&author=Miyamichi%2CK&author=Li%2CL&author=Luo%2CL) 
  1. Opie, S. R., Warrington, K. H. Jr., Agbandje-McKenna, M., Zolotukhin, S. & Muzyczka, N. Identification of amino acid residues in the capsid proteins of adeno-associated virus type 2 that contribute to heparan sulfate proteoglycan binding. J. Virol. 77, 6995–7006 (2003).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXksFGhs7s%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12768018)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC156206)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identification%20of%20amino%20acid%20residues%20in%20the%20capsid%20proteins%20of%20adeno-associated%20virus%20type%202%20that%20contribute%20to%20heparan%20sulfate%20proteoglycan%20binding&journal=J.%20Virol.&volume=77&pages=6995-7006&publication_year=2003&author=Opie%2CSR&author=Warrington%2CKH&author=Agbandje-McKenna%2CM&author=Zolotukhin%2CS&author=Muzyczka%2CN) 
  1. Acosta, J. C. et al. Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133, 1006–1018 (2008).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXnsF2gtbo%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18555777)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Chemokine%20signaling%20via%20the%20CXCR2%20receptor%20reinforces%20senescence&journal=Cell&volume=133&pages=1006-1018&publication_year=2008&author=Acosta%2CJC) 
  1. Huang, M. J. et al. Enhancement of the synthesis of n-3 PUFAs in fat-1 transgenic mice inhibits mTORC1 signalling and delays surgically induced osteoarthritis in comparison with wild-type mice. Ann. Rheum. Dis. 73, 1719–1727 (2014).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhslylu7zE)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23852692)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Enhancement%20of%20the%20synthesis%20of%20n-3%20PUFAs%20in%20fat-1%20transgenic%20mice%20inhibits%20mTORC1%20signalling%20and%20delays%20surgically%20induced%20osteoarthritis%20in%20comparison%20with%20wild-type%20mice&journal=Ann.%20Rheum.%20Dis.&volume=73&pages=1719-1727&publication_year=2014&author=Huang%2CMJ) 
  1. Czekanska, E. M., Stoddart, M. J., Richards, R. G. & Hayes, J. S. In search of an osteoblast cell model for in vitro research. Eur. Cell. Mater. 24, 1–17 (2012).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhtVGmsbnF)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22777949)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=In%20search%20of%20an%20osteoblast%20cell%20model%20for%20in%20vitro%20research&journal=Eur.%20Cell.%20Mater.&volume=24&pages=1-17&publication_year=2012&author=Czekanska%2CEM&author=Stoddart%2CMJ&author=Richards%2CRG&author=Hayes%2CJS) 
  1. Li, F., Adase, C. A. & Zhang, L. J. Isolation and culture of primary mouse keratinocytes from neonatal and adult mouse skin. J. Vis. Exp. https://doi.org/10.3791/56027 (2017).
  1. Deng, P. et al. Loss of KDM4B exacerbates bone-fat imbalance and mesenchymal stromal cell exhaustion in skeletal aging. Cell Stem Cell https://doi.org/10.1016/j.stem.2021.01.010 (2021).
  1. Ouyang, Z. et al. DEPTOR exacerbates bone-fat imbalance in osteoporosis by transcriptionally modulating BMSC differentiation. Biomed. Pharmacother. 151, 113164 (2022).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XitVCnu7bJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35609371)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=DEPTOR%20exacerbates%20bone-fat%20imbalance%20in%20osteoporosis%20by%20transcriptionally%20modulating%20BMSC%20differentiation&journal=Biomed.%20Pharmacother.&volume=151&publication_year=2022&author=Ouyang%2CZ) 
  1. Yi, Z. et al. A novel role for c-Src and STAT3 in apoptotic cell-mediated MerTK-dependent immunoregulation of dendritic cells. Blood 114, 3191–3198 (2009).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhtlShtbjL)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19667404)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2759647)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20novel%20role%20for%20c-Src%20and%20STAT3%20in%20apoptotic%20cell-mediated%20MerTK-dependent%20immunoregulation%20of%20dendritic%20cells&journal=Blood&volume=114&pages=3191-3198&publication_year=2009&author=Yi%2CZ) 
  1. Chen, A. et al. mTORC1 induces plasma membrane depolarization and promotes preosteoblast senescence by regulating the sodium channel Scn1a. Bone Res. 10, 25 (2022).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB38XmtlChs7o%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=35256591)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901653)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=mTORC1%20induces%20plasma%20membrane%20depolarization%20and%20promotes%20preosteoblast%20senescence%20by%20regulating%20the%20sodium%20channel%20Scn1a&journal=Bone%20Res.&volume=10&publication_year=2022&author=Chen%2CA) 
  1. Huang, B. et al. Osteoblasts secrete Cxcl9 to regulate angiogenesis in bone. Nat. Commun. 7, 13885 (2016).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XitFamsbrM)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27966526)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5171795)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Osteoblasts%20secrete%20Cxcl9%20to%20regulate%20angiogenesis%20in%20bone&journal=Nat.%20Commun.&volume=7&publication_year=2016&author=Huang%2CB) 
  1. Rosenfeld, L. et al. Nanobodies targeting prostate-specific membrane antigen for the imaging and therapy of prostate cancer. J. Med. Chem. 63, 7601–7615 (2020).
[CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhtVShtrbK)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32442375)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7383930)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nanobodies%20targeting%20prostate-specific%20membrane%20antigen%20for%20the%20imaging%20and%20therapy%20of%20prostate%20cancer&journal=J.%20Med.%20Chem.&volume=63&pages=7601-7615&publication_year=2020&author=Rosenfeld%2CL)
Resumir
本文综述了骨质疏松症与皮肤老化之间的关系,强调了骨髓、细胞因子及骨重塑在骨质疏松病理生理中的重要性。研究表明,骨质疏松症与皮肤胶原蛋白的流失密切相关,且这种流失是可逆的。多项研究探讨了不同因素对成骨细胞和破骨细胞分化的独立影响,以及皮肤和骨骼在衰老过程中的萎缩关系。此外,皮肤厚度减少与骨密度降低之间的风险因素也被提出,提示可能的病理生理机制、预防和治疗方法。最新的观察性研究显示,皮肤脆弱症与重大骨质疏松性骨折历史之间存在关联,进一步支持了皮肤和骨骼健康之间的联系。总之,骨质疏松症和皮肤老化的研究为理解衰老过程提供了新的视角,并为未来的治疗策略奠定了基础。