Ironing out the details of ferroptosis

Content
  1. Aisen, P., Enns, C. & Wessling-Resnick, M. Chemistry and biology of eukaryotic iron metabolism. Int. J. Biochem. Cell Biol. 33, 940–959 (2001).
[Article](https://doi.org/10.1016%2FS1357-2725%2801%2900063-2)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3MXlt1Sisbw%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11470229)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Chemistry%20and%20biology%20of%20eukaryotic%20iron%20metabolism&journal=Int.%20J.%20Biochem.%20Cell%20Biol.&doi=10.1016%2FS1357-2725%2801%2900063-2&volume=33&pages=940-959&publication_year=2001&author=Aisen%2CP&author=Enns%2CC&author=Wessling-Resnick%2CM) 
  1. Ponka, P., Tenenbein, M. & Eaton, J. W. in Handbook on the Toxicology of Metals 4th edn (eds. Nordberg, G. F. et al.) Vol. 2, 879–902 (Elsevier, 2015).
  1. Hentze, M. W., Muckenthaler, M. U. & Andrews, N. C. Balancing acts: molecular control of mammalian iron metabolism. Cell 117, 285–297 (2004).
[Article](https://doi.org/10.1016%2FS0092-8674%2804%2900343-5)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXjvFemsbg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15109490)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Balancing%20acts%3A%20molecular%20control%20of%20mammalian%20iron%20metabolism&journal=Cell&doi=10.1016%2FS0092-8674%2804%2900343-5&volume=117&pages=285-297&publication_year=2004&author=Hentze%2CMW&author=Muckenthaler%2CMU&author=Andrews%2CNC) 
  1. Weiss, G. & Goodnough, L. T. Anemia of chronic disease. N. Engl. J. Med. 352, 1011–1023 (2005).
[Article](https://doi.org/10.1056%2FNEJMra041809)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXit1Wkt7Y%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15758012)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Anemia%20of%20chronic%20disease&journal=N.%20Engl.%20J.%20Med.&doi=10.1056%2FNEJMra041809&volume=352&pages=1011-1023&publication_year=2005&author=Weiss%2CG&author=Goodnough%2CLT) 
  1. Hentze, M. W., Muckenthaler, M. U., Galy, B. & Camaschella, C. Two to tango: regulation of mammalian iron metabolism. Cell 142, 24–38 (2010).
[Article](https://doi.org/10.1016%2Fj.cell.2010.06.028)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3cXpt1Cjt7k%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20603012)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Two%20to%20tango%3A%20regulation%20of%20mammalian%20iron%20metabolism&journal=Cell&doi=10.1016%2Fj.cell.2010.06.028&volume=142&pages=24-38&publication_year=2010&author=Hentze%2CMW&author=Muckenthaler%2CMU&author=Galy%2CB&author=Camaschella%2CC) 
  1. Andrews, N. C. Disorders of iron metabolism. N. Engl. J. Med. 341, 1986–1995 (1999).
[Article](https://doi.org/10.1056%2FNEJM199912233412607)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXktVaqsw%3D%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10607817)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Disorders%20of%20iron%20metabolism&journal=N.%20Engl.%20J.%20Med.&doi=10.1056%2FNEJM199912233412607&volume=341&pages=1986-1995&publication_year=1999&author=Andrews%2CNC) 
  1. Lill, R. Function and biogenesis of iron-sulphur proteins. Nature 460, 831–838 (2009).
[Article](https://doi.org/10.1038%2Fnature08301)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXpvFCku7c%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19675643)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Function%20and%20biogenesis%20of%20iron-sulphur%20proteins&journal=Nature&doi=10.1038%2Fnature08301&volume=460&pages=831-838&publication_year=2009&author=Lill%2CR) 
  1. Rouault, T. A. Mammalian iron-sulphur proteins: novel insights into biogenesis and function. Nat. Rev. Mol. Cell Biol. 16, 45–55 (2015).
[Article](https://doi.org/10.1038%2Fnrm3909)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXitValurzO)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25425402)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Mammalian%20iron-sulphur%20proteins%3A%20novel%20insights%20into%20biogenesis%20and%20function&journal=Nat.%20Rev.%20Mol.%20Cell%20Biol.&doi=10.1038%2Fnrm3909&volume=16&pages=45-55&publication_year=2015&author=Rouault%2CTA) 
  1. Jordan, A. & Reichard, P. Ribonucleotide reductases. Annu. Rev. Biochem. 67, 71–98 (1998).
[Article](https://doi.org/10.1146%2Fannurev.biochem.67.1.71)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1cXlsFOms7Y%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9759483)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ribonucleotide%20reductases&journal=Annu.%20Rev.%20Biochem.&doi=10.1146%2Fannurev.biochem.67.1.71&volume=67&pages=71-98&publication_year=1998&author=Jordan%2CA&author=Reichard%2CP) 
  1. Rudolf, J., Makrantoni, V., Ingledew, W. J., Stark, M. J. & White, M. F. The DNA repair helicases XPD and FancJ have essential iron-sulfur domains. Mol. Cell 23, 801–808 (2006).
[Article](https://doi.org/10.1016%2Fj.molcel.2006.07.019)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XhtVKgu7%2FJ)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16973432)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20DNA%20repair%20helicases%20XPD%20and%20FancJ%20have%20essential%20iron-sulfur%20domains&journal=Mol.%20Cell&doi=10.1016%2Fj.molcel.2006.07.019&volume=23&pages=801-808&publication_year=2006&author=Rudolf%2CJ&author=Makrantoni%2CV&author=Ingledew%2CWJ&author=Stark%2CMJ&author=White%2CMF) 
  1. Gray, N. K. & Hentze, M. W. Iron regulatory protein prevents binding of the 43S translation pre-initiation complex to ferritin and eALAS mRNAs. EMBO J. 13, 3882–3891 (1994).
[Article](https://doi.org/10.1002%2Fj.1460-2075.1994.tb06699.x)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2MXnslentQ%3D%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC395301)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8070415)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20regulatory%20protein%20prevents%20binding%20of%20the%2043S%20translation%20pre-initiation%20complex%20to%20ferritin%20and%20eALAS%20mRNAs&journal=EMBO%20J.&doi=10.1002%2Fj.1460-2075.1994.tb06699.x&volume=13&pages=3882-3891&publication_year=1994&author=Gray%2CNK&author=Hentze%2CMW) 
  1. Rouault, T. A. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat. Chem. Biol. 2, 406–414 (2006).
[Article](https://doi.org/10.1038%2Fnchembio807)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28XmvFyqsrg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16850017)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20iron%20regulatory%20proteins%20in%20mammalian%20iron%20homeostasis%20and%20disease&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio807&volume=2&pages=406-414&publication_year=2006&author=Rouault%2CTA)  
  1. Kortman, G. A., Raffatellu, M., Swinkels, D. W. & Tjalsma, H. Nutritional iron turned inside out: intestinal stress from a gut microbial perspective. FEMS Microbiol. Rev. 38, 1202–1234 (2014).
[Article](https://doi.org/10.1111%2F1574-6976.12086)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvVyisb%2FL)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25205464)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Nutritional%20iron%20turned%20inside%20out%3A%20intestinal%20stress%20from%20a%20gut%20microbial%20perspective&journal=FEMS%20Microbiol.%20Rev.&doi=10.1111%2F1574-6976.12086&volume=38&pages=1202-1234&publication_year=2014&author=Kortman%2CGA&author=Raffatellu%2CM&author=Swinkels%2CDW&author=Tjalsma%2CH)
  1. Nemeth, E. & Ganz, T. Regulation of iron metabolism by hepcidin. Annu. Rev. Nutr. 26, 323–342 (2006).
[Article](https://doi.org/10.1146%2Fannurev.nutr.26.061505.111303)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28Xpt1Cltro%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16848710)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20iron%20metabolism%20by%20hepcidin&journal=Annu.%20Rev.%20Nutr.&doi=10.1146%2Fannurev.nutr.26.061505.111303&volume=26&pages=323-342&publication_year=2006&author=Nemeth%2CE&author=Ganz%2CT) 
  1. Drakesmith, H. & Prentice, A. M. Hepcidin and the iron-infection axis. Science 338, 768–772 (2012).
[Article](https://doi.org/10.1126%2Fscience.1224577)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38Xhs1WksrzN)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23139325)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepcidin%20and%20the%20iron-infection%20axis&journal=Science&doi=10.1126%2Fscience.1224577&volume=338&pages=768-772&publication_year=2012&author=Drakesmith%2CH&author=Prentice%2CAM) 
  1. Nemeth, E. et al. Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 2090–2093 (2004).
[Article](https://doi.org/10.1126%2Fscience.1104742)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXhtVOjsL3K)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15514116)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepcidin%20regulates%20cellular%20iron%20efflux%20by%20binding%20to%20ferroportin%20and%20inducing%20its%20internalization&journal=Science&doi=10.1126%2Fscience.1104742&volume=306&pages=2090-2093&publication_year=2004&author=Nemeth%2CE) 
  1. Donovan, A. et al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403, 776–781 (2000).
[Article](https://doi.org/10.1038%2F35001596)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXhsVWitrY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10693807)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Positional%20cloning%20of%20zebrafish%20ferroportin1%20identifies%20a%20conserved%20vertebrate%20iron%20exporter&journal=Nature&doi=10.1038%2F35001596&volume=403&pages=776-781&publication_year=2000&author=Donovan%2CA) 
  1. Hellman, N. E. & Gitlin, J. D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22, 439–458 (2002).
[Article](https://doi.org/10.1146%2Fannurev.nutr.22.012502.114457)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD38XmtF2htb8%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12055353)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ceruloplasmin%20metabolism%20and%20function&journal=Annu.%20Rev.%20Nutr.&doi=10.1146%2Fannurev.nutr.22.012502.114457&volume=22&pages=439-458&publication_year=2002&author=Hellman%2CNE&author=Gitlin%2CJD) 
  1. Harris, Z. L., Durley, A. P., Man, T. K. & Gitlin, J. D. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux. Proc. Natl Acad. Sci. USA 96, 10812–10817 (1999).
[Article](https://doi.org/10.1073%2Fpnas.96.19.10812)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK1MXmtFKjsL8%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC17965)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10485908)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeted%20gene%20disruption%20reveals%20an%20essential%20role%20for%20ceruloplasmin%20in%20cellular%20iron%20efflux&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.96.19.10812&volume=96&pages=10812-10817&publication_year=1999&author=Harris%2CZL&author=Durley%2CAP&author=Man%2CTK&author=Gitlin%2CJD) 
  1. Yu, Y. et al. Hepatic transferrin plays a role in systemic iron homeostasis and liver ferroptosis. Blood 136, 726–739 (2020).
[Article](https://doi.org/10.1182%2Fblood.2019002907)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhs1OhtLfE)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7414596)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32374849)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Hepatic%20transferrin%20plays%20a%20role%20in%20systemic%20iron%20homeostasis%20and%20liver%20ferroptosis&journal=Blood&doi=10.1182%2Fblood.2019002907&volume=136&pages=726-739&publication_year=2020&author=Yu%2CY) 
  1. Shayeghi, M. et al. Identification of an intestinal heme transporter. Cell 122, 789–801 (2005).
[Article](https://doi.org/10.1016%2Fj.cell.2005.06.025)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXhtVaqu73F)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16143108)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Identification%20of%20an%20intestinal%20heme%20transporter&journal=Cell&doi=10.1016%2Fj.cell.2005.06.025&volume=122&pages=789-801&publication_year=2005&author=Shayeghi%2CM) 
  1. Conrad, M. E. & Umbreit, J. N. Iron absorption and transport-an update. Am. J. Hematol. 64, 287–298 (2000).
[Article](https://doi.org/10.1002%2F1096-8652%28200008%2964%3A4%3C287%3A%3AAID-AJH9%3E3.0.CO%3B2-L)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXmtVCjtb0%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10911382)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20absorption%20and%20transport-an%20update&journal=Am.%20J.%20Hematol.&doi=10.1002%2F1096-8652%28200008%2964%3A4%3C287%3A%3AAID-AJH9%3E3.0.CO%3B2-L&volume=64&pages=287-298&publication_year=2000&author=Conrad%2CME&author=Umbreit%2CJN) 
  1. McKie, A. T. et al. A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Mol. Cell 5, 299–309 (2000).
[Article](https://doi.org/10.1016%2FS1097-2765%2800%2980425-6)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3cXhslyhtL0%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10882071)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20novel%20duodenal%20iron-regulated%20transporter%2C%20IREG1%2C%20implicated%20in%20the%20basolateral%20transfer%20of%20iron%20to%20the%20circulation&journal=Mol.%20Cell&doi=10.1016%2FS1097-2765%2800%2980425-6&volume=5&pages=299-309&publication_year=2000&author=McKie%2CAT)
  1. Gunshin, H. et al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388, 482–488 (1997).
[Article](https://doi.org/10.1038%2F41343)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DyaK2sXltFGqtbY%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9242408)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cloning%20and%20characterization%20of%20a%20mammalian%20proton-coupled%20metal-ion%20transporter&journal=Nature&doi=10.1038%2F41343&volume=388&pages=482-488&publication_year=1997&author=Gunshin%2CH) 
  1. Muckenthaler, M. U., Galy, B. & Hentze, M. W. Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annu Rev. Nutr. 28, 197–213 (2008).
[Article](https://doi.org/10.1146%2Fannurev.nutr.28.061807.155521)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1cXhtV2isLzN)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18489257)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Systemic%20iron%20homeostasis%20and%20the%20iron-responsive%20element%2Firon-regulatory%20protein%20%28IRE%2FIRP%29%20regulatory%20network&journal=Annu%20Rev.%20Nutr.&doi=10.1146%2Fannurev.nutr.28.061807.155521&volume=28&pages=197-213&publication_year=2008&author=Muckenthaler%2CMU&author=Galy%2CB&author=Hentze%2CMW) 
  1. Ohgami, R. S., Campagna, D. R., McDonald, A. & Fleming, M. D. The Steap proteins are metalloreductases. Blood 108, 1388–1394 (2006).
[Article](https://doi.org/10.1182%2Fblood-2006-02-003681)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD28Xot1ymu7g%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1785011)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16609065)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20Steap%20proteins%20are%20metalloreductases&journal=Blood&doi=10.1182%2Fblood-2006-02-003681&volume=108&pages=1388-1394&publication_year=2006&author=Ohgami%2CRS&author=Campagna%2CDR&author=McDonald%2CA&author=Fleming%2CMD) 
  1. Arosio, P. & Levi, S. Ferritin, iron homeostasis, and oxidative damage. Free Radic. Biol. Med 33, 457–463 (2002).
[Article](https://doi.org/10.1016%2FS0891-5849%2802%2900842-0)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD38XlvVWmtbg%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12160928)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferritin%2C%20iron%20homeostasis%2C%20and%20oxidative%20damage&journal=Free%20Radic.%20Biol.%20Med&doi=10.1016%2FS0891-5849%2802%2900842-0&volume=33&pages=457-463&publication_year=2002&author=Arosio%2CP&author=Levi%2CS) 
  1. Mancias, J. D., Wang, X., Gygi, S. P., Harper, J. W. & Kimmelman, A. C. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature 509, 105–109 (2014).
[Article](https://doi.org/10.1038%2Fnature13148)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXntlyisrc%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4180099)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24695223)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Quantitative%20proteomics%20identifies%20NCOA4%20as%20the%20cargo%20receptor%20mediating%20ferritinophagy&journal=Nature&doi=10.1038%2Fnature13148&volume=509&pages=105-109&publication_year=2014&author=Mancias%2CJD&author=Wang%2CX&author=Gygi%2CSP&author=Harper%2CJW&author=Kimmelman%2CAC) 
  1. Dowdle, W. E. et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat. Cell Biol. 16, 1069–1079 (2014).
[Article](https://doi.org/10.1038%2Fncb3053)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhslOisrnE)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25327288)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Selective%20VPS34%20inhibitor%20blocks%20autophagy%20and%20uncovers%20a%20role%20for%20NCOA4%20in%20ferritin%20degradation%20and%20iron%20homeostasis%20in%20vivo&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb3053&volume=16&pages=1069-1079&publication_year=2014&author=Dowdle%2CWE)
  1. Diao, J. et al. ATG14 promotes membrane tethering and fusion of autophagosomes to endolysosomes. Nature 520, 563–566 (2015).
[Article](https://doi.org/10.1038%2Fnature14147)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2MXjt1Sntbc%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4442024)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25686604)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=ATG14%20promotes%20membrane%20tethering%20and%20fusion%20of%20autophagosomes%20to%20endolysosomes&journal=Nature&doi=10.1038%2Fnature14147&volume=520&pages=563-566&publication_year=2015&author=Diao%2CJ) 
  1. Itakura, E., Kishi-Itakura, C. & Mizushima, N. The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes. Cell 151, 1256–1269 (2012).
[Article](https://doi.org/10.1016%2Fj.cell.2012.11.001)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhvVaisrvK)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23217709)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20hairpin-type%20tail-anchored%20SNARE%20syntaxin%2017%20targets%20to%20autophagosomes%20for%20fusion%20with%20endosomes%2Flysosomes&journal=Cell&doi=10.1016%2Fj.cell.2012.11.001&volume=151&pages=1256-1269&publication_year=2012&author=Itakura%2CE&author=Kishi-Itakura%2CC&author=Mizushima%2CN)
  1. Anandhan, A. et al. NRF2 controls iron homeostasis and ferroptosis through HERC2 and VAMP8. Sci. Adv. 9, eade9585 (2023).
[Article](https://doi.org/10.1126%2Fsciadv.ade9585)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXjsFWmu7g%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9891695)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36724221)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=NRF2%20controls%20iron%20homeostasis%20and%20ferroptosis%20through%20HERC2%20and%20VAMP8&journal=Sci.%20Adv.&doi=10.1126%2Fsciadv.ade9585&volume=9&publication_year=2023&author=Anandhan%2CA) 
  1. Pinnix, Z. K. et al. Ferroportin and iron regulation in breast cancer progression and prognosis. Sci. Transl. Med. 2, 43ra56 (2010).
[Article](https://doi.org/10.1126%2Fscitranslmed.3001127)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3734848)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=20686179)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroportin%20and%20iron%20regulation%20in%20breast%20cancer%20progression%20and%20prognosis&journal=Sci.%20Transl.%20Med.&doi=10.1126%2Fscitranslmed.3001127&volume=2&publication_year=2010&author=Pinnix%2CZK) 
  1. Zhang, D. L., Hughes, R. M., Ollivierre-Wilson, H., Ghosh, M. C. & Rouault, T. A. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab. 9, 461–473 (2009).
[Article](https://doi.org/10.1016%2Fj.cmet.2009.03.006)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXosVCks78%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685206)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19416716)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20ferroportin%20transcript%20that%20lacks%20an%20iron-responsive%20element%20enables%20duodenal%20and%20erythroid%20precursor%20cells%20to%20evade%20translational%20repression&journal=Cell%20Metab.&doi=10.1016%2Fj.cmet.2009.03.006&volume=9&pages=461-473&publication_year=2009&author=Zhang%2CDL&author=Hughes%2CRM&author=Ollivierre-Wilson%2CH&author=Ghosh%2CMC&author=Rouault%2CTA) 
  1. Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012).
[Article](https://doi.org/10.1016%2Fj.cell.2012.03.042)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XnslSntrw%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3367386)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=22632970)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20an%20iron-dependent%20form%20of%20nonapoptotic%20cell%20death&journal=Cell&doi=10.1016%2Fj.cell.2012.03.042&volume=149&pages=1060-1072&publication_year=2012&author=Dixon%2CSJ) 
  1. Stockwell, B. R. et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease. Cell 171, 273–285 (2017).
[Article](https://doi.org/10.1016%2Fj.cell.2017.09.021)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhs1Wqs7%2FL)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5685180)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28985560)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%3A%20a%20regulated%20cell%20death%20nexus%20linking%20metabolism%2C%20redox%20biology%2C%20and%20disease&journal=Cell&doi=10.1016%2Fj.cell.2017.09.021&volume=171&pages=273-285&publication_year=2017&author=Stockwell%2CBR) 
  1. Doll, S. & Conrad, M. Iron and ferroptosis: a still ill-defined liaison. IUBMB Life 69, 423–434 (2017).
[Article](https://doi.org/10.1002%2Fiub.1616)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXjvFajtrs%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28276141)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20ferroptosis%3A%20a%20still%20ill-defined%20liaison&journal=IUBMB%20Life&doi=10.1002%2Fiub.1616&volume=69&pages=423-434&publication_year=2017&author=Doll%2CS&author=Conrad%2CM) 
  1. Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014).
[Article](https://doi.org/10.1016%2Fj.cell.2013.12.010)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhtF2is70%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076414)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24439385)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulation%20of%20ferroptotic%20cancer%20cell%20death%20by%20GPX4&journal=Cell&doi=10.1016%2Fj.cell.2013.12.010&volume=156&pages=317-331&publication_year=2014&author=Yang%2CWS) 
  1. Friedmann Angeli, J. P. et al. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat. Cell Biol. 16, 1180–1191 (2014).
[Article](https://doi.org/10.1038%2Fncb3064)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXhvFKlsrrF)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=25402683)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Inactivation%20of%20the%20ferroptosis%20regulator%20Gpx4%20triggers%20acute%20renal%20failure%20in%20mice&journal=Nat.%20Cell%20Biol.&doi=10.1038%2Fncb3064&volume=16&pages=1180-1191&publication_year=2014&author=Friedmann%20Angeli%2CJP)
  1. Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019).
[Article](https://doi.org/10.1038%2Fs41586-019-1705-2)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitFGns7vM)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883167)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31634900)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20CoQ%20oxidoreductase%20FSP1%20acts%20parallel%20to%20GPX4%20to%20inhibit%20ferroptosis&journal=Nature&doi=10.1038%2Fs41586-019-1705-2&volume=575&pages=688-692&publication_year=2019&author=Bersuker%2CK) 
  1. Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019).
[Article](https://doi.org/10.1038%2Fs41586-019-1707-0)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXitFGns7vN)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31634899)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=FSP1%20is%20a%20glutathione-independent%20ferroptosis%20suppressor&journal=Nature&doi=10.1038%2Fs41586-019-1707-0&volume=575&pages=693-698&publication_year=2019&author=Doll%2CS) 
  1. Nakamura, T. et al. Phase separation of FSP1 promotes ferroptosis. Nature 619, 371–377 (2023).
[Article](https://doi.org/10.1038%2Fs41586-023-06255-6)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhtlCntL7I)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10338336)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37380771)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Phase%20separation%20of%20FSP1%20promotes%20ferroptosis&journal=Nature&doi=10.1038%2Fs41586-023-06255-6&volume=619&pages=371-377&publication_year=2023&author=Nakamura%2CT) 
  1. Mao, C., Liu, X., Yan, Y., Olszewski, K. & Gan, B. Reply to: DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E19–E23 (2023).
[Article](https://doi.org/10.1038%2Fs41586-023-06270-7)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVWjsbrP)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37407682)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Reply%20to%3A%20DHODH%20inhibitors%20sensitize%20to%20ferroptosis%20by%20FSP1%20inhibition&journal=Nature&doi=10.1038%2Fs41586-023-06270-7&volume=619&pages=E19-E23&publication_year=2023&author=Mao%2CC&author=Liu%2CX&author=Yan%2CY&author=Olszewski%2CK&author=Gan%2CB)
  1. Mishima, E. et al. DHODH inhibitors sensitize to ferroptosis by FSP1 inhibition. Nature 619, E9–E18 (2023).
[Article](https://doi.org/10.1038%2Fs41586-023-06269-0)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXhsVWjsb3K)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=37407687)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=DHODH%20inhibitors%20sensitize%20to%20ferroptosis%20by%20FSP1%20inhibition&journal=Nature&doi=10.1038%2Fs41586-023-06269-0&volume=619&pages=E9-E18&publication_year=2023&author=Mishima%2CE) 
  1. Mao, C. et al. DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature 593, 586–590 (2021).
[Article](https://doi.org/10.1038%2Fs41586-021-03539-7)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXhtVOksLjE)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8895686)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=33981038)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=DHODH-mediated%20ferroptosis%20defence%20is%20a%20targetable%20vulnerability%20in%20cancer&journal=Nature&doi=10.1038%2Fs41586-021-03539-7&volume=593&pages=586-590&publication_year=2021&author=Mao%2CC) 
  1. Dixon, S. J. et al. Pharmacological inhibition of cystine-glutamate exchange induces endoplasmic reticulum stress and ferroptosis. eLife 3, e02523 (2014).
[Article](https://doi.org/10.7554%2FeLife.02523)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054777)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24844246)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Pharmacological%20inhibition%20of%20cystine-glutamate%20exchange%20induces%20endoplasmic%20reticulum%20stress%20and%20ferroptosis&journal=eLife&doi=10.7554%2FeLife.02523&volume=3&publication_year=2014&author=Dixon%2CSJ) 
  1. Kagan, V. E. et al. Oxidized arachidonic and adrenic PEs navigate cells to ferroptosis. Nat. Chem. Biol. 13, 81–90 (2017).
[Article](https://doi.org/10.1038%2Fnchembio.2238)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhvVGgtLrE)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27842066)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Oxidized%20arachidonic%20and%20adrenic%20PEs%20navigate%20cells%20to%20ferroptosis&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio.2238&volume=13&pages=81-90&publication_year=2017&author=Kagan%2CVE) 
  1. Torti, S. V. & Torti, F. M. Iron and cancer: 2020 vision. Cancer Res. 80, 5435–5448 (2020).
[Article](https://doi.org/10.1158%2F0008-5472.CAN-20-2017)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3MXlvFemtrw%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32928919)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20cancer%3A%202020%20vision&journal=Cancer%20Res.&doi=10.1158%2F0008-5472.CAN-20-2017&volume=80&pages=5435-5448&publication_year=2020&author=Torti%2CSV&author=Torti%2CFM) 
  1. Xue, Q. et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy 19, 1982–1996 (2023).
[Article](https://doi.org/10.1080%2F15548627.2023.2165323)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3sXht1agsLc%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10283421)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=36622894)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Copper-dependent%20autophagic%20degradation%20of%20GPX4%20drives%20ferroptosis&journal=Autophagy&doi=10.1080%2F15548627.2023.2165323&volume=19&pages=1982-1996&publication_year=2023&author=Xue%2CQ)
  1. Chiabrando, D., Vinchi, F., Fiorito, V., Mercurio, S. & Tolosano, E. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front. Pharm. 5, 61 (2014).
[Article](https://doi.org/10.3389%2Ffphar.2014.00061)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Heme%20in%20pathophysiology%3A%20a%20matter%20of%20scavenging%2C%20metabolism%20and%20trafficking%20across%20cell%20membranes&journal=Front.%20Pharm.&doi=10.3389%2Ffphar.2014.00061&volume=5&publication_year=2014&author=Chiabrando%2CD&author=Vinchi%2CF&author=Fiorito%2CV&author=Mercurio%2CS&author=Tolosano%2CE) 
  1. Torti, S. V. & Torti, F. M. Iron and cancer: more ore to be mined. Nat. Rev. Cancer 13, 342–355 (2013).
[Article](https://doi.org/10.1038%2Fnrc3495)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXlvF2isL8%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23594855)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20and%20cancer%3A%20more%20ore%20to%20be%20mined&journal=Nat.%20Rev.%20Cancer&doi=10.1038%2Fnrc3495&volume=13&pages=342-355&publication_year=2013&author=Torti%2CSV&author=Torti%2CFM) 
  1. Muckenthaler, M. U., Rivella, S., Hentze, M. W. & Galy, B. A red carpet for iron metabolism. Cell 168, 344–361 (2017).
[Article](https://doi.org/10.1016%2Fj.cell.2016.12.034)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhslaqsL4%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5706455)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28129536)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A%20red%20carpet%20for%20iron%20metabolism&journal=Cell&doi=10.1016%2Fj.cell.2016.12.034&volume=168&pages=344-361&publication_year=2017&author=Muckenthaler%2CMU&author=Rivella%2CS&author=Hentze%2CMW&author=Galy%2CB)
  1. Kumar, S. & Bandyopadhyay, U. Free heme toxicity and its detoxification systems in human. Toxicol. Lett. 157, 175–188 (2005).
[Article](https://doi.org/10.1016%2Fj.toxlet.2005.03.004)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXks1Wmt78%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15917143)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Free%20heme%20toxicity%20and%20its%20detoxification%20systems%20in%20human&journal=Toxicol.%20Lett.&doi=10.1016%2Fj.toxlet.2005.03.004&volume=157&pages=175-188&publication_year=2005&author=Kumar%2CS&author=Bandyopadhyay%2CU) 
  1. Papanikolaou, G. & Pantopoulos, K. Iron metabolism and toxicity. Toxicol. Appl. Pharmacol. 202, 199–211 (2005).
[Article](https://doi.org/10.1016%2Fj.taap.2004.06.021)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2MXjvF2g)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15629195)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%20metabolism%20and%20toxicity&journal=Toxicol.%20Appl.%20Pharmacol.&doi=10.1016%2Fj.taap.2004.06.021&volume=202&pages=199-211&publication_year=2005&author=Papanikolaou%2CG&author=Pantopoulos%2CK) 
  1. Bacon, B. R. et al. Diagnosis and management of hemochromatosis: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 54, 328–343 (2011).
[Article](https://doi.org/10.1002%2Fhep.24330)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=21452290)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Diagnosis%20and%20management%20of%20hemochromatosis%3A%202011%20practice%20guideline%20by%20the%20American%20Association%20for%20the%20Study%20of%20Liver%20Diseases&journal=Hepatology&doi=10.1002%2Fhep.24330&volume=54&pages=328-343&publication_year=2011&author=Bacon%2CBR) 
  1. Anderson, G. J. & Frazer, D. M. Current understanding of iron homeostasis. Am. J. Clin. Nutr. 106, 1559S–1566S (2017).
[Article](https://doi.org/10.3945%2Fajcn.117.155804)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5701707)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=29070551)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Current%20understanding%20of%20iron%20homeostasis&journal=Am.%20J.%20Clin.%20Nutr.&doi=10.3945%2Fajcn.117.155804&volume=106&pages=1559S-1566S&publication_year=2017&author=Anderson%2CGJ&author=Frazer%2CDM) 
  1. Bridle, K. R. et al. Disrupted hepcidin regulation in HFE-associated haemochromatosis and the liver as a regulator of body iron homoeostasis. Lancet 361, 669–673 (2003).
[Article](https://doi.org/10.1016%2FS0140-6736%2803%2912602-5)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD3sXhsVajt7Y%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12606179)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Disrupted%20hepcidin%20regulation%20in%20HFE-associated%20haemochromatosis%20and%20the%20liver%20as%20a%20regulator%20of%20body%20iron%20homoeostasis&journal=Lancet&doi=10.1016%2FS0140-6736%2803%2912602-5&volume=361&pages=669-673&publication_year=2003&author=Bridle%2CKR)
  1. Kowdley, K. V. Iron, hemochromatosis, and hepatocellular carcinoma. Gastroenterology 127, S79–S86 (2004).
[Article](https://doi.org/10.1016%2Fj.gastro.2004.09.019)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD2cXhtVGmtb%2FN)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15508107)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Iron%2C%20hemochromatosis%2C%20and%20hepatocellular%20carcinoma&journal=Gastroenterology&doi=10.1016%2Fj.gastro.2004.09.019&volume=127&pages=S79-S86&publication_year=2004&author=Kowdley%2CKV) 
  1. Fernandez-Real, J. M. et al. Blood letting in high-ferritin type 2 diabetes: effects on vascular reactivity. Diabetes Care 25, 2249–2255 (2002).
[Article](https://doi.org/10.2337%2Fdiacare.25.12.2249)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12453969)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Blood%20letting%20in%20high-ferritin%20type%202%20diabetes%3A%20effects%20on%20vascular%20reactivity&journal=Diabetes%20Care&doi=10.2337%2Fdiacare.25.12.2249&volume=25&pages=2249-2255&publication_year=2002&author=Fernandez-Real%2CJM) 
  1. Wood, J. C. Cardiac iron across different transfusion-dependent diseases. Blood Rev. 22, S14–S21 (2008).
[Article](https://doi.org/10.1016%2FS0268-960X%2808%2970004-3)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BD1MXhsFShsr8%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2896332)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=19059052)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Cardiac%20iron%20across%20different%20transfusion-dependent%20diseases&journal=Blood%20Rev.&doi=10.1016%2FS0268-960X%2808%2970004-3&volume=22&pages=S14-S21&publication_year=2008&author=Wood%2CJC) 
  1. Fang, X. et al. Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ. Res. 127, 486–501 (2020).
[Article](https://doi.org/10.1161%2FCIRCRESAHA.120.316509)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BB3cXhsV2mt73M)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=32349646)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Loss%20of%20cardiac%20ferritin%20H%20facilitates%20cardiomyopathy%20via%20Slc7a11-mediated%20ferroptosis&journal=Circ.%20Res.&doi=10.1161%2FCIRCRESAHA.120.316509&volume=127&pages=486-501&publication_year=2020&author=Fang%2CX) 
  1. Fang, X. et al. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl Acad. Sci. USA 116, 2672–2680 (2019).
[Article](https://doi.org/10.1073%2Fpnas.1821022116)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXivVajsb0%3D)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=30692261)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Ferroptosis%20as%20a%20target%20for%20protection%20against%20cardiomyopathy&journal=Proc.%20Natl%20Acad.%20Sci.%20USA&doi=10.1073%2Fpnas.1821022116&volume=116&pages=2672-2680&publication_year=2019&author=Fang%2CX) 
  1. Dixon, S. J. & Stockwell, B. R. The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10, 9–17 (2014).
[Article](https://doi.org/10.1038%2Fnchembio.1416)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC3sXhvFCjtrzO)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24346035)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=The%20role%20of%20iron%20and%20reactive%20oxygen%20species%20in%20cell%20death&journal=Nat.%20Chem.%20Biol.&doi=10.1038%2Fnchembio.1416&volume=10&pages=9-17&publication_year=2014&author=Dixon%2CSJ&author=Stockwell%2CBR) 
  1. Wang, H. et al. Characterization of ferroptosis in murine models of hemochromatosis. Hepatology 66, 449–465 (2017).
[Article](https://doi.org/10.1002%2Fhep.29117)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2sXhtF2qs7nF)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=28195347)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Characterization%20of%20ferroptosis%20in%20murine%20models%20of%20hemochromatosis&journal=Hepatology&doi=10.1002%2Fhep.29117&volume=66&pages=449-465&publication_year=2017&author=Wang%2CH) 
  1. Devos, D. et al. Targeting chelatable iron as a therapeutic modality in Parkinson’s disease. Antioxid. Redox Signal. 21, 195–210 (2014).
[Article](https://doi.org/10.1089%2Fars.2013.5593)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC2cXpvVWmurk%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060813)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=24251381)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Targeting%20chelatable%20iron%20as%20a%20therapeutic%20modality%20in%20Parkinson%E2%80%99s%20disease&journal=Antioxid.%20Redox%20Signal.&doi=10.1089%2Fars.2013.5593&volume=21&pages=195-210&publication_year=2014&author=Devos%2CD) 
  1. Ayton, S., Lei, P. & Bush, A. I. Metallostasis in Alzheimer’s disease. Free Radic. Biol. Med. 62, 76–89 (2013).
[Article](https://doi.org/10.1016%2Fj.freeradbiomed.2012.10.558)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC38XhslymtrnN)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=23142767)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Metallostasis%20in%20Alzheimer%E2%80%99s%20disease&journal=Free%20Radic.%20Biol.%20Med.&doi=10.1016%2Fj.freeradbiomed.2012.10.558&volume=62&pages=76-89&publication_year=2013&author=Ayton%2CS&author=Lei%2CP&author=Bush%2CAI) 
  1. Conrad, M., Angeli, J. P., Vandenabeele, P. & Stockwell, B. R. Regulated necrosis: disease relevance and therapeutic opportunities. Nat. Rev. Drug Discov. 15, 348–366 (2016).
[Article](https://doi.org/10.1038%2Fnrd.2015.6)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XoslSrtQ%3D%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6531857)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26775689)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Regulated%20necrosis%3A%20disease%20relevance%20and%20therapeutic%20opportunities&journal=Nat.%20Rev.%20Drug%20Discov.&doi=10.1038%2Fnrd.2015.6&volume=15&pages=348-366&publication_year=2016&author=Conrad%2CM&author=Angeli%2CJP&author=Vandenabeele%2CP&author=Stockwell%2CBR) 
  1. Kontoghiorghe, C. N. & Kontoghiorghes, G. J. Efficacy and safety of iron-chelation therapy with deferoxamine, deferiprone, and deferasirox for the treatment of iron-loaded patients with non-transfusion-dependent thalassemia syndromes. Drug Des. Devel. Ther. 10, 465–481 (2016).
[Article](https://doi.org/10.2147%2FDDDT.S79458)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1cXmtFOmt7o%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4745840)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=26893541)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Efficacy%20and%20safety%20of%20iron-chelation%20therapy%20with%20deferoxamine%2C%20deferiprone%2C%20and%20deferasirox%20for%20the%20treatment%20of%20iron-loaded%20patients%20with%20non-transfusion-dependent%20thalassemia%20syndromes&journal=Drug%20Des.%20Devel.%20Ther.&doi=10.2147%2FDDDT.S79458&volume=10&pages=465-481&publication_year=2016&author=Kontoghiorghe%2CCN&author=Kontoghiorghes%2CGJ) 
  1. Spangler, B. et al. A reactivity-based probe of the intracellular labile ferrous iron pool. Nat. Chem. Biol. 12, 680–685 (2016).
[Article](https://doi.org/10.1038%2Fnchembio.2116)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC28XhtVKntLfO)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4990480)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=27376690)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=A reactivity-based probe of the intracellular labile ferrous iron pool&journal=Nat. Chem. Biol.&doi=10.1038%2Fnchembio.2116&volume=12&pages=680-685&publication_year=2016&author=Spangler,B) 
  1. Muir, R. K. et al. Measuring dynamic changes in the labile iron pool in vivo with a reactivity-based probe for positron emission tomography. ACS Cent. Sci. 5, 727–736 (2019).
[Article](https://doi.org/10.1021%2Facscentsci.9b00240)  [CAS](https://www.nature.com/articles/cas-redirect/1:CAS:528:DC%2BC1MXmsVahu7g%3D)  [PubMed Central](http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487455)  [PubMed](http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=31041393)  [Google Scholar](http://scholar.google.com/scholar_lookup?&title=Measuring%20dynamic%20changes%20in%20the%20labile%20iron%20pool%20in%20vivo%20with%20a%20reactivity-based%20probe%20for%20positron%20emission%20tomography&journal=ACS%20Cent.%20Sci.&doi=10.1021%2Facscentsci.9b00240&volume=5&pages=727-736&publication_year=2019&author=Muir%2CRK)
Summary
The articles listed provide a comprehensive overview of iron metabolism in eukaryotes, focusing on its chemistry, biology, and regulation. Aisen et al. (2001) discuss the fundamental aspects of eukaryotic iron metabolism, while Hentze et al. (2004, 2010) delve into the molecular mechanisms that control iron homeostasis in mammals. Weiss and Goodnough (2005) address the implications of chronic disease on anemia, highlighting the role of iron in health. Andrews (1999) reviews disorders related to iron metabolism, emphasizing the clinical significance of these conditions. Lill (2009) and Rouault (2015) explore the function and biogenesis of iron-sulfur proteins, which are crucial for various cellular processes. Jordan and Reichard (1998) provide insights into ribonucleotide reductases, essential for DNA synthesis, while Rudolf et al. (2006) reveal the importance of iron-sulfur domains in DNA repair helicases. Collectively, these studies underscore the intricate balance of iron metabolism and its critical role in cellular function and disease, offering valuable insights for future research and therapeutic strategies.